Tropical cyclone waves detected with infrasound sensor array

Jan 15, 2013

The strong winds of a tropical cyclone whip up the sea surface, driving ocean waves a dozen meters (about 40 feet) high. When one such ocean wave runs into another wave that has an equal period but is traveling in the opposite direction, the interaction produces low-frequency sound waves that can be detected thousands of kilometers away. Known as microbarom, the infrasound signals produced by interacting ocean surface waves have typical frequencies around 0.2 hertz.

Researchers previously determined that as a hurricane travels along its track, waves generated by the storm earlier in time will interact with those generated later on, producing a strong microbarom signal in the storm's wake. Researchers also found, however, that microbarom signals are produced by regular behavior, including swell, surface waves, or non-tropical cyclone storms.

To identify how tropical cyclone-produced waves interact with ambient surface , and to determine whether the tropical cyclone microbarom signal could be isolated from the background noise, Stopa et al. examined the infrasound signals detected by an International Monitoring System infrasound in Hawaii during the passage of Hurricanes Neki and Felicia in 2009.

The authors used modeled wind speeds to simulate the wave conditions during the hurricanes, then used these estimates to drive an acoustic model that enabled them to calculate the microbarom infrasound activity. They find that the microbarom signals observed by the Hawaiian sensor array aligned with their modeled estimates. The authors note that the infrasound signal of the cyclone-generated waves tended to swamp the detectors, drowning out the much weaker signals of the ambient wave interactions. They suggest that given further refinements, measuring the infrasound signal of microbarom waves could be a good way to detect and measure the wave conditions near a tropical cyclone.

Explore further: Study shows air temperature influenced African glacial movements

More information: Atmospheric infrasound from nonlinear wave interactions during Hurricanes Felicia and Neki of 2009, Journal of Geophysical Research - Oceans, doi: 10.1029/2012JC008257 , 2012

add to favorites email to friend print save as pdf

Related Stories

Langmuir circulation inhibits near-surface water turbulence

Jun 18, 2012

In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed ...

The inaudible symphony analyzed

Nov 03, 2008

By measuring 'inaudible' sounds, events like illegal nuclear tests can be detected. This 'infrasound' can also help us understand more about the upper atmosphere, according to Läslo Evers. Evers will receive a PhD based ...

Ocean surface loses resistance during extreme hurricanes

Sep 18, 2012

TU Delft researchers have discovered that the ocean surface loses practically all aerodynamic resistance during hurricanes with extremely high wind speeds. This occurs as a result of a very smooth layer lying ...

Climate models should include ocean waves

Jun 14, 2012

(Phys.org) -- A new field study by researchers from Swinburne University of Technology suggests that the effect of wave activity on oceans should be incorporated in long term climate and weather prediction ...

Recommended for you

Clean air: Fewer sources for self-cleaning

9 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

9 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

16 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

16 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...