Sorting stem cells

Jan 03, 2013

When an embryonic stem cell is in the first stage of its development it has the potential to grow into any type of cell in the body, a state scientists call undifferentiated.

A team of researchers from Scotland has now demonstrated a way to easily distinguish undifferentiated from later-stage stem cells whose fate is sealed. The results are published in the ' (AIP) journal Biomicrofluidics.

The researchers used an electric field to pull stem cells through a fluid in a process called dielectrophoresis. They varied the frequency of the voltage used to generate the electric field and studied how the cells moved, a response that was affected by the cell's .

The researchers found that differentiated stem cells could store a significantly greater charge on their , a characteristic that might be used to effectively identify and separate them from undifferentiated cells.

The researchers write that the wrinkling, folding, and thinning of a cell's membrane as it differentiates may explain why the later-stage cells can store more charge. The sorting method may prove useful in separating cells for biomedical research or ultimately for treatments of diseases such as Parkinson's.

Explore further: Molecular gate that could keep cancer cells locked up

More information: "Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives" is published in the journal Biomicrofluidics: bmf.aip.org/resource/1/biomgb/v6/i4/p044113_s1

add to favorites email to friend print save as pdf

Related Stories

Solving stem cell mysteries

Oct 26, 2012

The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions, which are not well understood. Learning ...

Generating dopamine via cell therapy for Parkinson's disease

Jul 02, 2012

In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's ...

Recommended for you

Molecular gate that could keep cancer cells locked up

2 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

6 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0