Stem cells: Tuning the death sentence

Jan 23, 2013

In this week's issue of Science Signaling (22 January, 2013), Danen and colleagues of the Division of Toxicology of LACDR report novel insights into the question how stem cells decide to commit suicide when their DNA is damaged.

It is known that damaged DNA, especially in stem cells can lead to accumulation of potentially dangerous mutations that may be a source for cancer. To prevent this, evolution has provided our cells with the ability to recognize damaged DNA and to rapidly respond to it. This so-called "" activates repair mechanisms, and, if damage is too severe to repair, turns on a cascade of events leading to .

All cells in our body are constantly experiencing small injuries in their DNA, for instance due to UV light or chemicals. It is important that cells first try to repair damaged DNA and only decide to commit suicide if damage is beyond repair. If suicide signals would be turned on too fast, in our tissues might be depleted causing premature aging. The discovery published in this week's Science Signaling is a new mechanism that acts as a break on the suicide signals.

In collaboration with colleagues from the Department of Toxicogenetics of the LUMC and from the University of Copenhagen, Danen et al. have been able to integrate several large-scale analyses to unravel the events that make up the DNA damage response. Genome-wide changes in and protein modifications, as well as genome-wide "gene silencing" screens were integrated with bioinformatics tools to create signaling networks. This was possible through extensive collaboration within the NGI-funded, "Netherlands Toxicogenomics Center".

The signaling networks point to novel methods to recognize chemicals or drugs that activate a DNA damage response and hence, might be dangerous for . At the same time, the networks provide new clues for why are often able to avoid activation of suicide signals when exposed to radiotherapy or chemotherapy. The publication in Science Signaling is one of the outcomes of this project; additional publications will come out this year.

Explore further: The origins of polarized nervous systems

add to favorites email to friend print save as pdf

Related Stories

Refusal of suicide order: Why tumor cells become resistant

Jun 23, 2008

Cells with irreparable DNA damage normally induce programmed cell death, or apoptosis. However, this mechanism often fails in tumor cells so that transformed cells are able to multiply and spread throughout the body. Scientists ...

Recommended for you

The origins of polarized nervous systems

10 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

14 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

16 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.