Sinister code-breakers, beware

Sinister code-breakers, beware
The research of Daniel Wichs, a new assistant professor in the College of Computer and Information Science, focuses on how cryptography can continue protecting personal data in an evolving digital age. Credit: Brooks Canaday.

In the early– to mid-​​20th cen­tury, gov­ern­ments com­monly used cryp­tog­raphy to encrypt top-​​secret mes­sages or mil­i­tary com­mu­ni­ca­tions. But now that the com­puter and Internet age has evolved to a point where smart­phones and tablets are readily avail­able at our fin­ger­tips, its use has become much more wide­spread to meet the chal­lenges of the 21st cen­tury, according to Daniel Wichs, a newly appointed assis­tant pro­fessor in the Col­lege of Com­puter and Infor­ma­tion Sci­ence.

"Cryp­tog­raphy is being used every day, but people prob­ably don't even notice it," Wichs said. "Whether you're using or log­ging on to a site from your mobile phone, cryp­tog­raphy is there making sure others aren't able to see the data you're sending and receiving."

His interest in the field of cryp­tog­raphy blos­somed as an under­grad­uate studying math­e­matics and com­puter sci­ence at Stan­ford Uni­ver­sity. The sub­ject, he said, allowed him to apply com­plex math­e­matics with seem­ingly scant prac­tical appli­ca­tions to solve real-​​world com­puter sci­ence prob­lems related to security.

Wichs earned his doc­torate from New York Uni­ver­sity in 2011 and later served as a Josef Raviv Memo­rial Post­doc­toral Fellow at IBM before arriving at North­eastern this fall.

Wichs has noticed major changes in the field within the last few years. The mas­sive expan­sion of cryp­tog­raphy work, for example, means researchers have to be much more focused on how out­side forces, like hackers or for­eign gov­ern­ments, try to break through encrypted sys­tems or exploit unknown weaknesses.

In par­tic­ular, his work focuses in part on what are called "side-​​channel attacks," in which third par­ties try to learn about an encrypted system by mea­suring infor­ma­tion like how long a com­puter process takes or how much elec­tricity is used by a given calculation.

"You can learn a lot of infor­ma­tion just from these seemingly-​​meaningless details, so cryp­tog­raphy sys­tems are starting to take them into account too by securing not just the data but also the com­puting system itself," Wichs said.

He noted that he is fas­ci­nated with cryp­tog­raphy because it merges theory and prac­tical appli­ca­tions in ways that are seldom found in many fields of research.

"It's a really cool set of prob­lems you're facing," he said. "How do you make sure data—which is a key part of nearly every com­po­nent of our lives today—is secured?"

But per­haps the most impor­tant thing about cryp­tog­raphy research, Wichs said, is that the more time pro­fes­sionals spend working to pro­tect crit­ical data and sys­tems, the less time the public should spend wor­rying about per­sonal infor­ma­tion breaches.

"If cryp­tog­ra­phers do their job, you don't have to think about it all that much," Wichs said. "It's our goal to make sure these crit­ical stan­dards and pro­to­cols are in place."

Citation: Sinister code-breakers, beware (2013, January 24) retrieved 19 April 2024 from https://phys.org/news/2013-01-sinister-code-breakers-beware.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Data mining in the social-media ecosystem

0 shares

Feedback to editors