Scientists will assess health of New York-Long Island barrier protection in wake of Sandy

Jan 09, 2013

A rapid response science team from the University of Texas at Austin's Institute for Geophysics will help map the impact of Hurricane Sandy on the beach/barrier systems off the south shore of Long Island.

The team will collaborate this month with researchers from Stony Brook University, Adelphi University, the City University of New York and other institutions from the New York metro area to assess the health of the offshore barrier system that protects the New York Harbor and southwestern Long Island region against damage from future storms.

The team will conduct marine geophysical surveys of the seafloor and shallow subsurface to map the sedimentary impact of the hurricane on the beach/barrier systems of selected bay, inlet and nearshore areas of the south shore of Long Island.

Sand and other coarse-grained sediments are vital to the naturally occurring barrier systems that dissipate storm surges, protect coastal residences and shelter biologically diverse estuaries and ecosystems.

Results of the survey will help environmental engineers plan future efforts to restore sand to the barrier system in the wake of Sandy's devastating, long-term damage.

The Texas team has unique experience with similar geophysical surveys of nearshore sediments after Hurricane Ike, the costliest storm in Texas history, which made landfall near Galveston on Sept. 13, 2008. Furthermore, the team has a rich collaborative history studying the continental shelf off New Jersey and New York.

"As with Ike, we will be looking at where the sand went as a result of the storm," said John Goff, a principal investigator for the project at The University of Texas at Austin. "With Ike, we found that the ebb of the storm surge moved a lot of beach barrier sand off shore."

Using a compressed high-intensity radar pulse (CHIRP) and an even higher frequency seafloor supplied by Stony Brook University, the scientists will use multiple research vessels to profile the seafloor and upper of the ocean bottom. Similar research after Ike found an "event layer" of sand that the storm deposited over a wide area of ocean floor.

The danger with any storm of Sandy's magnitude, added co-principal investigator Jamie Austin, is that "a lot of the sand gets pushed too far off shore, beyond the ability of normal processes to reincorporate it into the system that nourishes the barrier naturally."

When that happens, the only way to restore the sedimentary system may be to recover sand from new, offshore locations manually and deposit it where it was before the storm.

"The cost to society for these restoration projects can be huge," said Austin, "so we need to get the sediment budget details absolutely right."

Colleagues from Adelphi University and the City University of New York also expect to take sediment samples during these at-sea investigations to assess sediment budgets further.

"Our study of the sediments will allow us to better understand how the surge impacted the fragile estuarine system," said Beth Christensen, team leader from Adelphi University.

The U.S. Geological Survey is providing crucial seafloor mapping data for before-and-after comparisons.

Assessment of the seafloor is already under way. The geophysical survey will take place Jan. 7-28. Results will be prepared for distribution later this year.

Explore further: Biology trumps chemistry in open ocean

add to favorites email to friend print save as pdf

Related Stories

Protecting Houston from the next big hurricane

Nov 14, 2011

To protect Houston and Galveston from future hurricanes, a Rice University-led team of experts recommends building a floodgate across the Houston Ship Channel adding new levees to protect densely populated areas on Galveston ...

Stevens has an eye on the science of Hurricane Irene

Aug 25, 2011

While residents along the New Jersey and New York coasts rush to the store for batteries and bottled water, scientists at Stevens Institute of Technology are heading to the laboratory to help predict the impact of Hurricane ...

Recommended for you

Biology trumps chemistry in open ocean

1 hour ago

Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients. While phytoplankton's ...

Underwater robot sheds new light on Antarctic sea ice

7 hours ago

The first detailed, high-resolution 3-D maps of Antarctic sea ice have been developed using an underwater robot. Scientists from the UK, USA and Australia say the new technology provides accurate ice thickness ...

Damage caused by geothermal probes is rare

9 hours ago

Soil settlements or upheavals and resulting cracks in monuments, floodings, or dried-up wells: Reports about damage caused by geothermal probes have made the population feel insecure. In fact, the probability ...

Extreme shrimp may hold clues to alien life

10 hours ago

( —At one of the world's deepest undersea hydrothermal vents, tiny shrimp are piled on top of each other, layer upon layer, crawling on rock chimneys that spew hot water. Bacteria, inside the shrimps' ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.