Scientists will assess health of New York-Long Island barrier protection in wake of Sandy

Jan 09, 2013

A rapid response science team from the University of Texas at Austin's Institute for Geophysics will help map the impact of Hurricane Sandy on the beach/barrier systems off the south shore of Long Island.

The team will collaborate this month with researchers from Stony Brook University, Adelphi University, the City University of New York and other institutions from the New York metro area to assess the health of the offshore barrier system that protects the New York Harbor and southwestern Long Island region against damage from future storms.

The team will conduct marine geophysical surveys of the seafloor and shallow subsurface to map the sedimentary impact of the hurricane on the beach/barrier systems of selected bay, inlet and nearshore areas of the south shore of Long Island.

Sand and other coarse-grained sediments are vital to the naturally occurring barrier systems that dissipate storm surges, protect coastal residences and shelter biologically diverse estuaries and ecosystems.

Results of the survey will help environmental engineers plan future efforts to restore sand to the barrier system in the wake of Sandy's devastating, long-term damage.

The Texas team has unique experience with similar geophysical surveys of nearshore sediments after Hurricane Ike, the costliest storm in Texas history, which made landfall near Galveston on Sept. 13, 2008. Furthermore, the team has a rich collaborative history studying the continental shelf off New Jersey and New York.

"As with Ike, we will be looking at where the sand went as a result of the storm," said John Goff, a principal investigator for the project at The University of Texas at Austin. "With Ike, we found that the ebb of the storm surge moved a lot of beach barrier sand off shore."

Using a compressed high-intensity radar pulse (CHIRP) and an even higher frequency seafloor supplied by Stony Brook University, the scientists will use multiple research vessels to profile the seafloor and upper of the ocean bottom. Similar research after Ike found an "event layer" of sand that the storm deposited over a wide area of ocean floor.

The danger with any storm of Sandy's magnitude, added co-principal investigator Jamie Austin, is that "a lot of the sand gets pushed too far off shore, beyond the ability of normal processes to reincorporate it into the system that nourishes the barrier naturally."

When that happens, the only way to restore the sedimentary system may be to recover sand from new, offshore locations manually and deposit it where it was before the storm.

"The cost to society for these restoration projects can be huge," said Austin, "so we need to get the sediment budget details absolutely right."

Colleagues from Adelphi University and the City University of New York also expect to take sediment samples during these at-sea investigations to assess sediment budgets further.

"Our study of the sediments will allow us to better understand how the surge impacted the fragile estuarine system," said Beth Christensen, team leader from Adelphi University.

The U.S. Geological Survey is providing crucial seafloor mapping data for before-and-after comparisons.

Assessment of the seafloor is already under way. The geophysical survey will take place Jan. 7-28. Results will be prepared for distribution later this year.

Explore further: NASA and NOAA's nighttime and daytime views of the blizzard of 2015

add to favorites email to friend print save as pdf

Related Stories

Protecting Houston from the next big hurricane

Nov 14, 2011

To protect Houston and Galveston from future hurricanes, a Rice University-led team of experts recommends building a floodgate across the Houston Ship Channel adding new levees to protect densely populated areas on Galveston ...

Stevens has an eye on the science of Hurricane Irene

Aug 25, 2011

While residents along the New Jersey and New York coasts rush to the store for batteries and bottled water, scientists at Stevens Institute of Technology are heading to the laboratory to help predict the impact of Hurricane ...

Recommended for you

On the right track for tropical clouds

Jan 27, 2015

Think of a tropical storm about the size of Alaska. Large and lumbering, the Madden-Julian Oscillation (MJO) affects weather patterns in every corner of the world. Unlike its well-known cousin El Niño, the ...

SMAP will track a tiny cog that keeps cycles spinning

Jan 27, 2015

When you open the back of a fine watch, you see layer upon layer of spinning wheels linked by interlocking cogs, screws and wires. Some of the cogs are so tiny they're barely visible. Size doesn't matter—what's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.