Safe, inexpensive iron catalysts provide a 'greener' alternative to typical pharmaceutical production methods

Jan 30, 2013
A polarized light micrograph of iron(II) sulfate crystals (background) that can catalyze formation of amide compounds (white structures) cheaply and efficiently. Credit (Background)Comstock Images/Thinkstock; Credit: (Foreground)2013 A*STAR Institute of Chemical and Engineering Sciences

More than one-quarter of all known pharmaceuticals contain the chemical group known as amides: carboxylic acid derivatives derived from ammonia or amines. Most methods for synthesizing amides, however, are inefficient and use hazardous reagents. New work from Anqi Chen and co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore promises to make amide chemistry more economical and sustainable than before. The team has uncovered a way to convert aldehydes and amine salts into amides using iron(II) sulfate—a harmless, inexpensive substance as the catalyst to perform this transformation efficiently and with little waste.

Most alternative methods to produce amide molecules use expensive noble such as palladium and ruthenium, which are incompatible with industrial demands for cost-efficiency. Funded by a (GSK)–Singapore Economic Development Board (EDB) endowment on sustainable drug manufacturing, the researchers investigated a different approach known as 'direct oxidative amidation'. This method couples an and an amine salt in the presence of a catalyst and an , generating an amide in one step.

Nontoxic and cheap catalysts with sufficient chemical activity for amide transformation are hard to find. To identify an efficient and inexpensive catalyst, the team screened a range of and discovered that iron(II) sulfate (see image), a supplement for anemia that costs less than a dollar per kilogram, has strong potential to catalyze amide formation from aldehydes with amine salts.

Apart from the environmentally benign iron catalyst, the transformation uses an inexpensive oxidant known as tert-butyl hydroperoxide and very cheap , the main composition of limestone, as a base. By combining these inexpensive ingredients together, the researchers achieved excellent amide yields under conditions convenient for both laboratory and industrial operations. 

Further experiments revealed the versatility of this amide synthesis. A range of amine salts and aldehydes with different structural and electronic features could be transformed into amides with good-to-excellent yields. Importantly, salts derived from natural amino acids such as valine and proline also underwent oxidative amidation without disrupting their chirality or 'handedness'—a critical structural phenomenon for drug molecules and peptides.

The team demonstrated the potential of this iron-catalyzed amidation for drug manufacturing by synthesizing the antiarrhythmic drug N-acetylprocainamide in a one-step procedure that is more efficient than previous multiple-step routes. "This environmentally benign method has significant advantages over conventional techniques," says Chen, "and we intend to identify pharmaceutical targets where this promising method could bring about significant cost-savings and improved sustainability."

Explore further: The fluorescent fingerprint of plastics

More information: Ghosh, S. C., Ngiam, J. S. Y., Chai, C. L. L., Seayad, A. M., Dang, T. T. & Chen, A. Iron-catalyzed efficient synthesis of amides from aldehydes and amine hydrochloride salts. Advanced Synthesis & Catalysis 354, 1407–1412 (2012). dx.doi.org/10.1002/adsc.201200020

add to favorites email to friend print save as pdf

Related Stories

Discovery of new catalyst promises cheaper, greener drugs

Mar 27, 2012

A chemistry team at the University of Toronto has discovered environmentally-friendly iron-based nanoparticle catalysts that work as well as the expensive, toxic, metal-based catalysts that are currently in wide use by the ...

An ideal candidate for sustainable catalysis

Sep 16, 2010

(PhysOrg.com) -- The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal ...

Recommended for you

The fluorescent fingerprint of plastics

4 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

8 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

10 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

10 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 0