Reversal of magnetic moment by an electrical voltage in a single material could lead to new low-power electronic devices

Jan 04, 2013
Switching magnetism. In the material studied the magnetic moment (M) and the electrical polarization (P) are coupled, so that negative electrical charges (-) accumulate near the magnetic southpole (S), and positive ones near the northpole (N). By applying an electric voltage (E), the direction of M and P can be reversed. Credit: 2012 Yusuke Tokunaga, RIKEN Advanced Science Institute

Researchers at the Advanced Science Institute at Wako, Japan, have discovered a material whose magnetic orientation can be fully switched by electric voltages. Such switchable materials have applications for magnetic data storage or novel electronic devices that use the electron's magnetic properties. As Yusuke Tokunaga from the research team explains, "Reversal of magnetization by a voltage enables ultra-low power consumption electronic devices because applying a voltage and not an electrical current means that such devices are free from Joule heating loss."

Many materials show magnetism and many also show electric polarization, where permanent electric dipole moments persist even when the external is turned off. However, only a few materials—known as multiferroics—show both these so-called ferroic properties simultaneously. In many multiferroics, these two properties are coupled so that the can be changed around by switching the magnetic field. But from a practical perspective, for example in data storage, the opposite scenario of switching magnetism with an electrical voltage is more interesting. Until now, this type of coupling has not been observed in a material.

An example of the first type of coupling is GdFeO3. This material has been shown previously to be multiferroic by the same research group, but changes in the electric field had only minor influences on magnetism. The related compound DyFeO3, on the other hand, is known to have a strong coupling between magnetism and in principle, but it is not a multiferroic as it requires to show this coupling. The researchers' aim was to try and unify these properties by synthesizing crystals of (Dy,Gd)FeO3, and indeed, some of the resulting compounds—including compounds where Tb was used instead of Gd—show the desired properties. Not only are they multiferroic, but for the first time they also show a complete reversal of magnetization by an electric field.

So far, the effect is limited to temperatures barely a few degrees above absolute zero. Extending the work to compounds that show this behavior at higher temperatures is an important next step, confirms Tokunaga. "For the practical application toward ultra-low power consumption devices we need to find new multiferroics that can operate at higher temperatures." With the insights gained on how to achieve magnetic switching, he believes this is highly possible.

Explore further: Physicists consider implications of recent revelations about the universe's first light

More information: Tokunaga, Y., Taguchi, Y., Arima, T.-H. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nature Physics advance online publication 19 August 2012 doi:10.1038/nphys2405.

add to favorites email to friend print save as pdf

Related Stories

Multiferroics could lead to low-power devices

May 17, 2011

( -- Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding ...

Fridge magnet transformed

Mar 11, 2011

The ubiquitous and unremarkable magnet, BaFe12O19, is manufactured in large volumes, has the simplest crystal structure in its class, and is often seen on refrigerator doors—but it is set for an inte ...

Applying pressure reaps material rewards

Dec 22, 2011

Researchers in Japan have succeeded in growing single crystals of yttrium manganite (YMnO3) using a high-pressure material-growth technique1. Developed by Shintaro Ishiwata and his colleagues from the RIKEN ...

Recommended for you

Mapping the road to quantum gravity

4 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

Steering chemical reactions with laser pulses

12 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

User comments : 0

More news stories