Reacting to meltdown

Jan 23, 2013
Looking into the high temperature furnace at the induction coil that heats the samples and fixed points.

The National Physical Laboratory (NPL) has helped CEA (Alternative Energies and Atomic Energy Commission of France) measure high temperature reference standards in one of their research furnaces, which are used in studies to help minimise the risk of nuclear accidents through better plant design and the improved understanding of stages involved in severe reactor accidents.

When a experiences a 'meltdown' it produces corium - a hot liquid mixture of uranium oxide fuel, zirconium from fuel cases, and steel and concrete from the reactor structure. This corrosive liquid can eat its way through a and, if it makes contact with reactor coolant, can cause steam explosions and produce hydrogen. This hydrogen can lead to further explosions, similar to those witnessed at the Fukushima Daiichi in Japan following the earthquake and tsunami that struck it on 11 March 2011.

At its Cadarache research facility in the south of France, CEA studies corium at temperatures up to 3000 °C to help minimise risk through better plant design and improved understanding of the stages involved in severe reactor accidents.

NPL is involved in a collaborative research project called 'High temperature measurement for industrial applications' (HiTeMS), which is funded by the European Metrology Research Programme (EMRP). As part of this larger project, NPL and the National Measurement Institutes of France (LNE-Cnam) and Turkey (UME) helped CEA measure high temperature reference standards in one of their research furnaces.

The calibration of temperature measurement equipment requires the use of fixed reference points, usually based on the melting or freezing point of certain substances. In this instance NPL provided rhenium-carbon fixed points that have a reference temperature of 2474 °C. These were designed by LNE-Cnam to be very robust, and proved to be so as they coped with extreme temperature changes of up to 1000 °C per minute inside the furnace.

NPL's Dave Lowe, who worked on the project, said: "Having their own fixed points will allow CEA to calibrate their temperature measurement equipment in situ, giving them greatly reduced uncertainties and improved knowledge for designing safety systems."

Explore further: Comfortable climate indoors with porous glass

More information: More on NPL's work on Temperature Measurement.
More on EMRP Project: High temperature measurement for industrial applications (HiTeMS).

add to favorites email to friend print save as pdf

Related Stories

GE defends nuclear plant design

Mar 18, 2011

General Electric defended its 40 year old Mark 1 reactors at the center of Japan's nuclear crisis Friday, saying that early questions about reactor's safety had long been addressed.

No uncontrolled reaction at Fukushima: operator

Nov 03, 2011

The operator of Japan's crippled Fukushima atomic plant Thursday played down fears of an uncontrolled chain reaction at the site, despite the discovery of evidence of recent nuclear fission.

Fuel cells show potential

Mar 20, 2012

National Physical Laboratory scientists have developed an innovative fuel cell reference electrode that has been used to map changes in electrode potential inside a working polymer electrolyte membrane (PEM) ...

New freeform standards to support scanning CMMs

Nov 14, 2012

The National Physical Laboratory (NPL), the UK's National Measurement Institute, has developed a new range of three dimensional standards for verifying freeform coordinate measurement machines (CMMs). The standard allows ...

Recommended for you

Comfortable climate indoors with porous glass

15 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

16 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

16 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

16 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0