How the purple and pink sunscreens of reef corals work

Jan 23, 2013
How the purple and pink sunscreens of reef corals work
Coral from the Red Sea a pink photoprotective chromoprotein.

(Phys.org)—New research by the University of Southampton has found a mechanism as to how corals use their pink and purple hues as sunscreen to protect them against harmful sunlight.

Many reef corals need light to survive, as they benefit from sugars and lipids that are produced by their light-dependent . However, in the shallow water of , light levels are often higher than required by the corals, so paradoxically, the vital sunlight can become harmful for the algae and their hosts.

Apart from temperature, light stress is a major driver of coral bleaching – the loss of the symbiotic algae that represents a threat to coral reef survival.

Working in the and under tightly controlled conditions in the Coral Reef Laboratory of the University of Southampton, the team of researchers produced that the pink and purple chromoproteins can act as for the symbiotic algae by removing parts of the light that might become otherwise harmful.

Dr Jörg Wiedenmann, Senior Lecturer of Biological Oceanography and Head of the University's Coral Reef Laboratory, who led the study says: "The beautiful pink and purple hues that are produced by the coral host are often evoked by chromoproteins; that are biochemically related to the (GFP) of the jellyfish Aequorea victoria. In contrast to their green glowing counterpart, the chromoproteins take up substantial amounts of light, but they don't re-emit light.

"GFP-like proteins were suggested to contribute to the protection of corals and their from excess sunlight. This hypothesis has been controversially discussed as the mechanism as to how these pigments function remained unclear. At least for the chromoproteins we know now that they have indeed the capacity to fulfill this function."

The researchers also proposed an explanation for the mysterious phenomenon that some corals accumulate exceptionally high amounts of chromoproteins in growing areas, such as branch tips or in the region of healing wounds.

Dr Wiedenmann, who is based at the National Oceanography Centre, Southampton, explains: "These growing areas contain essentially no symbiotic algae, so much of the light is reflected by the white coral skeleton instead of being used by the algae. The resulting increased light intensities in the new parts of the coral represent a potential danger for the algal cells that need to colonise these areas. Hence, it seems that the corals use a clever trick to help their symbionts. The higher light intensity switches on the genes that are responsible for the production of the sunscreening chromoproteins.

"Our results suggest that the screening effect of the chromoproteins could help the algae to enter the new tissue. Once the symbiont population is fully established, the light levels in the tissue decrease as the algae use most of the light for photosynthesis. As a consequence, the genes of the chromoproteins are switched off again which allows the coral to save the energy required for their production."

The research contributes to a better understanding of the coral's response to environmental stress. Knowledge of the stress resilience of corals is an important requirement to help predictions of the fate of coral reefs that are exposed to climate change and various forms of anthropogenic disturbance.

The paper is published in the latest edition of the journal Reefs.

Explore further: Orchid named after UC Riverside researcher

More information: link.springer.com/article/10.1007%2Fs00338-012-0994-9

add to favorites email to friend print save as pdf

Related Stories

Viruses linked to algae that control coral health

Jul 12, 2012

Scientists have discovered two viruses that appear to infect the single-celled microalgae that reside in corals and are important for coral growth and health, and they say the viruses could play a role in ...

Scientists link nutrient pollution to coral bleaching

Sep 27, 2012

Too many nutrients can put corals at risk, a new study shows. Excessive nitrogen in the water affects their ability to cope with rising water temperatures and other environmental pressures, making them vulnerable ...

Recommended for you

Orchid named after UC Riverside researcher

13 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

15 hours ago

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

15 hours ago

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...