Protein recognition and disorder: A debate

January 11, 2013

The extent to which three-dimensional structure is required for protein recognition and function is an area of vigorous debate with clear implications for protein engineering. Two differing viewpoints have been put forward in two articles published in F1000 Biology Reports today.

In structuring their arguments, the authors were encouraged to consider the opposing viewpoint, examine the points put forward and critique them in their own articles. This novel collaborative approach has given rise to a considered exchange of ideas and may consequently stimulate further research in the field.

In their article entitled "The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure", Keith Dunker (Indiana University School of Medicine) and Vladimir N. Uversky ( and University of South Florida) argue that the lock and key model of recognition cannot be upheld as a universal truth. They argue that some proteins without a rigid structure, intrinsically disordered proteins (IDPs), still have function.

In contrast, Joël Janin (Université Paris-Sud) and Michael J.E. Sternberg (Imperial College, London), in their article "Protein flexibility, not disorder, is intrinsic to molecular recognition", argue that a protein's function in the real world environment of the body's cells is dependent on the structure of that protein, and that protein recognition requires regions of complementary structure binding to each other. Janin and Sternberg also note that many proteins seem to be disordered in the test tube but are in fact proteins waiting for partners (PWPs), which then adopt fully ordered structures in the presence of other components of the cell required to perform a function.

To counter the argument put forward by Janin and Sternberg, Dunker and Uversky conclude that the major difference between ordinary proteins and IDPs is that the former fold first and then bind to their partners while that latter remain disordered until they bind their partners. Furthermore, some IDPs can be much more dynamic than just "waiting for a partner", with the ability to switch from one partner to another and change structures while changing the partner.

Commenting on the two articles, Richard Henderson, MRC Laboratory of Molecular Biology, Cambridge said: "Both articles are by leaders who have given a great deal of thought to the function of proteins that appear to be intrinsically unfolded. Their different emphases will no doubt stimulate experiments as well as debate in the Structural Biology community. Time will tell us whether one or both models reflect how nature uses these structures."

Explore further: Disordered proteins sensitive to environment, sequence changes

Related Stories

Research divines structure for class of proteins

September 8, 2010

Most proteins are shapely. But about one-third of them lack a definitive form, at least that scientists can readily observe. These intrinsically disordered proteins (IDPs) perform a host of important biological functions, ...

Common 'chaperone' protein found to work in surprising way

April 3, 2011

In the constantly morphing field of protein structure, scientists at The Scripps Research Institute offer yet another surprise: a common "chaperone" protein in cells thought to help other proteins fold has been shown instead ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 14, 2013
As if the outcome depends on the choice of what is used to view the structures - Electron density, electrostatic, etc.

This approaches duality - if you need a wave use whatever (measure) you need to give you one. If you need a particle make sure the measure(ment) gives you one.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.