Photon amplification, emission observed in plastic scintillation materials

January 8, 2013

A research team has observed, in polystyrene-based scintillation materials, photon amplification and emission that cannot be explained with the established scintillation mechanism. Photon yield from the polystyrene-based scintillation materials was found to increase in accordance with a power-law of concentration of fluorescent molecules doped in polystyrene.

The results of this research can have a variety of applications such as environmental / radiation measurements and elementary particle / experiments, and it requires new interpretations of the scintillation mechanism in plastic scintillation materials, which are expected to have further applications in the future. It is also expected to help to develop high performance .

The results of this research were published in Applied Physics Letters, the weekly journal of the , on December 28, 2012.

Plastic scintillation materials made by doping fluorescent molecules to plastics have been used in a wide variety of applications in order to obtain high sensitivity in detecting radiation. The scintillation mechanism of these materials was established in the middle of 20th century and it is explained with the so-called "ladder", in which ultra violet light emitted from plastics by radiation is converted stepwise into visible light by fluorescent molecules. This means that fluorescent molecules whose absorption wavelength overlaps with the emission wavelengths of plastics are required in making plastic scintillation materials.

In order to develop high performance plastic scintillation materials, the team focused on polystyrene, which emits when exposed to . In a departure from the established prerequisites, para-terphenyl was used as fluorescent molecule despite the fact that its absorption wavelength has a small overlap with the emission wavelength of polystyrene.

In the established scintillation mechanism, light emitted from plastics should be absorbed by fluorescent molecules and the light should be attenuated every time when it is re-emitted. In addition, when the relation between emission wavelength of polystyrene and absorption wavelength para-terphenyl is taken into account, photon yield emitted from polystyrene-based scintillation materials should be smaller than photon yield emitted from polystyrene having no fluorescent molecules added.

However, the photon yield emitted from the polystyrene-based scintillation materials is found to be more than that from having no fluorescent molecules added (see the figure on the left). In other words, the birth of new luminescence was shown. Furthermore, it is clearly shown (in the figure on the right) that photon yield from the scintillation material increases in accordance with a power-law of fluorescent molecule concentration (which is changed to the maximum of 5-orders). These phenomena cannot be explained with the present scintillation mechanism of plastic scintillation materials and requires new interpretations.

The product of this research will lead the way to the improved performance of radiation detectors which use a plastic scintillation material is used for such applications as natural environmental radiation / radiation measurements and / atomic nucleus experiments.

Explore further: Novel radiation surveillance technology could help thwart nuclear terrorism

More information: Nakamura, H. et al. Development of polystyrene-based scintillation materials and its mechanisms, Applied Physics Letters, 101, 261110 (2012). dx.doi.org/10.1063/1.4773298

Related Stories

Molecular light sources sensitive to environment

July 30, 2010

A Dutch-French team of scientists led by FOM (Foundation for Fundamental Research on Matter) researcher Dr Danang Birowosuto and University of Twente researcher Dr Allard Mosk has obtained the first experimental evidence ...

Highly efficient organic light-emitting diodes

August 9, 2011

(PhysOrg.com) -- Organic light-emitting diodes (OLEDs) are seen as a promising replacement for the liquid-crystal displays (LCDs) used in many flat-screen televisions because they are cheaper to mass-produce. Zhikuan Chen ...

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

A nano-roundabout for light

December 8, 2016

Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.