New options for transparent contact electrodes

Jan 29, 2013
New options for transparent contact electrodes
The nanowires have diameters around 0.1 micrometers and lenghts between 5 and 10 micrometers. Credit: Bild: ACS Nano 3: 1767-1774

Found in flat screens, solar modules, or in new organic light-emitting diode (LED) displays, transparent electrodes have become ubiquitous. Typically, they consist of metal oxides like In2O3, SnO2, ZnO and TiO2.

But since raw materials like indium are becoming more and more costly, researchers have begun to look elsewhere for alternatives. A new review article by HZB scientist Dr. Klaus Ellmer, published in the renowned scientific journal , is hoping to shed light on the different advantages and disadvantages of established and new materials for use in these kinds of contact electrodes.

Metallic (Ag or Cu) or carbon based nanostructures exhibit many interesting properties that could potentially be exploited pending further research. Even graphene, a modified form of carbon, could turn out to be a suitable , since it is both transparent and highly conductive. These properties depend, to a large extent, on the material's composition: graphene, which consists of a single layer of arranged into a hexagonal "honeycomb" grid, is two-dimensional, and, within these dimensions, electrons can freely move about.

According to Ellmer, "these new kinds of materials could be combined with more conventional solutions or find their way into entirely new areas of application." For this to become a reality, researchers have yet to come up with solutions to nanostructure problems like short circuits and continue to illuminate the relevant transport mechanisms. It would also be interesting to determine whether these two-dimensional "electron gases" also form in materials other than graphene. Success ultimately depends on whether or not the new materials prove stable in the long run in their practical application and whether or not they can be produced relatively inexpensively.

Explore further: Scientists unveil new technology to better understand small clusters of atoms

More information: Ellmer is sole author of an extensive review article published in Nature Photonics online on 30. November 2012, doi: 10.1038/nphoton.2012.282

add to favorites email to friend print save as pdf

Related Stories

Graphene electrodes for organic solar cells

Jan 06, 2011

A promising approach for making solar cells that are inexpensive, lightweight and flexible is to use organic (that is, carbon-containing) compounds instead of expensive, highly purified silicon. But one stubborn ...

Scientists find simple way to produce graphene

Jun 20, 2011

(PhysOrg.com) -- Scientists at Northern Illinois University say they have discovered a simple method for producing high yields of graphene, a highly touted carbon nanostructure that some believe could replace ...

Recommended for you

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

Towards more efficient solar cells

Aug 13, 2014

A layer of silicon nanocrystals and erbium ions may help solar cells to extract more energy from the ultraviolet (UV, high-energy) part of the solar spectrum. Experimental physicists from the FOM Foundation, ...

User comments : 0