Nanomaterials key to developing stronger artificial hearts

January 31, 2013

On January 30, 2013 ACS Nano published a study by Ali Khademhosseini, PhD, MASc, Brigham and Women's Hospital Division of Biomedical Engineering, detailing the creation of innovative cardiac patches that utilize nanotechnology to enhance the conductivity of materials to induce cardiac tissue formation.

Creation of these ultra-thin cardiac patches put medicine a step closer to durable, high-functioning that could be used to repair damaged hearts and other organs.

The cardiac tissue patches utilize a hydrogel scaffolding reinforced by nanomaterials called carbon nanotubes.

To create the patches, the researchers seeded neonatal rat onto carbon nanotube-infused hydrogels.

These novel patches showed excellent mechanical integrity and advanced electrophysiological functions. Moreover, they demonstrated a protective effect against chemicals toxic to heart tissue.

Explore further: Biomedical engineers patch a heart using novel tissue cell therapy

Related Stories

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.