Molecular twist helps regulate the cellular message to make histone proteins

Jan 17, 2013
Molecular twist helps regulate the cellular message to make histone proteins
This shows the structure of Histone mRNA stem-loop (center) with the proteins exonuclease (left) and SLBP (right). Arrow (top center) points to the twist. Credit: Tong lab, Columbia University and Marzluff lab, UNC School of Medicine

Histone proteins are the proteins that package DNA into chromosomes. Every time the cell replicates its DNA it must make large amounts of newly made histones to organize DNA within the nucleus.

An imbalance in the production of DNA and histones is usually lethal for the cell, which is why the levels of the messenger RNA (mRNA) encoding the histone proteins must be tightly controlled to ensure the proper amounts of histones (not too many and not too few) are made.

In a published online in the January 18, 2013 issue of the journal Science, researchers at the University of North Carolina and Columbia University show for the first time how two key proteins in messenger RNA communicate via a molecular twist to help maintain the balance of histones to DNA.

"This is one of the safeguards that our have evolved and it is part of the normal progression through cell division – all growing cells have to use this all of the time," said study co-author William F. Marzluff, PhD, Kenan Distinguished Professor of biochemistry and biophysics at UNC's School of Medicine.

Every time a cell divides, Marzluff adds, it has to replicate both DNA and histone proteins and then package them together into . "That way, each of the two cells resulting from division has one complete set of genes."

In humans, the 23 chromosomes that house roughly 35,000 genes are made up of both DNA and . The DNA for a histone is first transcribed into RNA, which then acts as a guide for building a histone protein. Because the RNA relays a message – in this case a blueprint for a histone protein, it is referred to as , or mRNA.

Histone mRNAs differ from all other mRNAs and end in a stem-loop [or ] sequence that is required for proper regulation of histone mRNAs. In this study, the Columbia team of Liang Tong, PhD, Professor of and the corresponding author on this project, and graduate student Dazhi Tan used crystallography to reveal the structure of two important proteins near the end of the histone mRNA stem-loop. This molecular complex is required for regulating the levels of the histone mRNA.

One of these proteins, stem-loop binding protein (SLBP) is required for translation of histone mRNA into protein, and the other is an exonuclease, which is required to destroy the . Both were initially identified at UNC by Marzluff and colleague Zbigniew Dominski, PhD, Professor of biochemistry and , also a study co-author.

"We knew there was some interaction between SLBP and the exonuclease, so we asked Liang to explain how they bind and communicate," Dominski said. "And the surprising thing was that the proteins do it not by binding to each other but by changing the RNA structure at the site."

"From the science point of view, that was the most dramatic thing," Marzluff said. "The way these proteins help each other is either one can twist the RNA so the other can recognize it easier, and they don't have to touch each other to do that."

This protein complex is a critical regulator of histone synthesis, and is an important component of cell growth, he adds. "Interfering with it could provide a new method for interfering with cancer cell growth."

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

Related Stories

Messenger RNA with FLASH

Oct 22, 2009

A study from the University of North Carolina at Chapel Hill has identified a key player in a molecular process essential for DNA replication within cells.

Scientists discover secret life of chromatin

Sep 01, 2011

Chromatin - the intertwined histone proteins and DNA that make up chromosomes – constantly receives messages that pour in from a cell’s intricate signaling networks: Turn that gene on. Stifle that one.

Researchers provide atomic view of a histone chaperone

Mar 01, 2012

Mayo Clinic researchers have gained insights into the function of a member of a family of specialized proteins called histone chaperones. Using nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, they ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

16 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

17 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.