A new material for environmentally friendlier electronics

Jan 28, 2013

The electronics industry has a remarkable impact on the environment, yet research is devising new solutions to reduce it. Among these, a new compound with an unutterable name, the diisopropylammonium bromide (DIPAB), a new ferroelectric material created by an international team of researchers that include Massimo Capone and Gianluca Giovannetti of Istituto Officina dei Materiali at CNR  and of the International School for Advanced Studies of Trieste (SISSA), whose research has been just published in Science magazine.

"A ferroelectric material has properties analogous to those of a magnet in electricity, a system in which the electric tend to 'line up'" explains Capone. Materials with such characteristics are key in the production of electronic devices, from ordinary computers to . The materials that are usually employed, like barium or titanium oxides, have a very strong impact on the environment and, besides, require complex equipment for their production. "This is not the case of the organic compound we have elaborated and studied, that can be processed very easily from and has a low impact on the environment" comments Giovannetti. And not only it is environmentally friendlier, but also cheaper.

By improving its response at the processing stage, the use of such material may spread to the field of electronic devices. The theoretical study carried out by Giovannetti and Capone aims at identifying new materials with even better characteristics and to fine-tune their processing.  "The process currently employed still shows some small errors, that is, exhibits a percentage of processed molecules that differs from what expected", points out Capone. "By improving such aspect DIPAB may be employed in the future in the production, for instance, of ."

DIPAB is defined as a . What does that mean? "Basically it is a lattice in which at each point, instead of a single atom, as observed in normal crystals, an entire molecule is found," explains Capone. "This is a crucial aspect, as such molecules feature 'tails' that can orient themselves much more easily than what occurs with ions in atomic crystals, thus favouring polarization." Capone, supported by the European Research Council ERC through a prestigious "Starting Grant", believes that the DIPAB processing is only a starting point, and that molecular compounds may replace oxides in several other fields of application, including devices based on superconductors.

Explore further: Smartgels are thicker than water

More information: Science 25 January 2013: Vol. 339 no. 6118 pp. 401-402. DOI: 10.1126/science.1232939

add to favorites email to friend print save as pdf

Related Stories

Soft Lego built in the computer

Jan 17, 2013

Barbara Capone of the Computational Physics Group of the University of Vienna has developed a new method for the construction of building blocks at the nanoscale. The researcher in Soft Matter Physics, who ...

Small and stable ferroelectric domains

Mar 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Ferroelectric oxides do the twist

Apr 12, 2012

(Phys.org) -- Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials ...

Applying pressure reaps material rewards

Dec 22, 2011

Researchers in Japan have succeeded in growing single crystals of yttrium manganite (YMnO3) using a high-pressure material-growth technique1. Developed by Shintaro Ishiwata and his colleagues from the RIKEN ...

Recommended for you

New star-shaped molecule breakthrough

3 hours ago

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0