Development of the first way to make large amounts of promising anti-cancer substance

January 16, 2013
Development of the first way to make large amounts of promising anti-cancer substance

Scientists are reporting development of the first practical way to make large amounts of a promising new anti-cancer substance that kills cancer cells differently than existing medicines. Their article on synthesis of the substance, and tests demonstrating its effectiveness in the laboratory, appears in ACS' Journal of Medicinal Chemistry.

Isamu Shiina and colleagues explain that the substance, AMF-26, showed promise against certain forms of cancer in laboratory studies, fostering excitement about its potential for development as a new anti-cancer drug. That excitement centered on AMF-26's action in targeting a structure in cells, the , that had never been exploited in the past. The Golgi apparatus sorts and modifies hormones, enzymes and other key proteins for transport elsewhere.

However, AMF-26 had been available in only small amounts by semisynthesis starting from AMF-14, which was extracted from the common soil mold of the genus Trichoderma.

Their report describes the first successful practical synthesis of AMF-26 and laboratory tests showing that the synthetic AMF-26 is just as effective as its natural counterpart. "The large-scale production of AMF-26 and its derivatives for the development of novel are now in progress in this laboratory," the report states.

Explore further: Farm management choice can benefit fungi key to healthy ecosystems

More information: "Total Synthesis of AMF-26, an Antitumor Agent for Inhibition of the Golgi System, Targeting ADP-Ribosylation Factor 1" J. Med. Chem., 2013, 56 (1), pp 150–159. DOI: 10.1021/jm301695c

An effective method for the total synthesis of 1 (AMF-26), a potentially promising new anticancer drug that disrupts the Golgi system by inhibiting the ADP-ribosylation factor 1 (Arf1) activation, has been developed for the first time. The construction of the chiral linear precursor (a key to the synthesis) was achieved by the asymmetric aldol reaction followed by the computer-assisted predictive stereoselective intramolecular Diels–Alder reaction. The global antitumor activity of the totally synthetic 1 against a variety of human cancer cells was assessed using a panel of 39 human cancer cell lines (JFCR39), and it was shown that the synthetic 1 strongly inhibited the growth of several cancer cell lines at concentrations of less than 0.04 μM. Biological assays of novel derivatives, 26 and 31, which have different side-chains at the C-4 positions in the Δ1,2-octalin backbone, disclosed the importance of the suitable structure of the side-chain containing conjugated multidouble bonds.

Related Stories

New file format will help 3-D printing progress

July 22, 2011

( -- A newly approved standard for 3-D printing file interchange will greatly enhance 3-D printing capabilities, says Cornell's Hod Lipson, who led the development of the standard.

A second ascent of chemistry's Mt. Everest

December 12, 2012

In science's equivalent of ascending Mt. Everest, researchers are reporting success in one of the most difficult challenges in synthetic chemistry—a field in which scientists reproduce natural and other substances from ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.