'Jet-lagged' fruit flies provide clues for body clock synchronisation

Jan 17, 2013

New research led by a team at Queen Mary, University of London, has found evidence of how daily changes in temperature affect the fruit fly's internal clock.

"A wide range of organisms, including insects and humans, have evolved an to regulate daily patterns of behaviour, such as sleep, appetite, and attention," explains Professor Ralf Stanewsky, senior study author from Queen Mary's School of Biological and .

"Research on animal and human clocks shows that they are fine tuned by natural and man-made time cues, for example the daily changes of light and temperature, alarm clocks and 'noise-pollution'. Understanding the principles of clock synchronisation could be useful in developing treatments against the negative effects of sleep-disorders and shift-work. This research has many implications because it extends our knowledge of how the environment influences ."

Scientists have a good understanding of how light affects the , also known as the circadian clock. Specially evolved cells in the brain contain the circadian clock, which needs to be synchronised with the natural environment every day to help them run on time.

In this new study, the researchers made groups of 'jet-lagged' by exposing them to daily temperature changes reflecting warmer or colder climates to understand how temperature affects the .

The team discovered that a group of 'dorsal clock cells' found in the back of the fly's brain was more important for clock-synchronisation at warmer temperatures. But a group of ventral clock cells found further to the front of the brain played an important role at the cooler temperature range. In addition to their clock function, these cells also act like a thermometer, being more active at certain temperatures.

The research also shows that removing the Cryptochrome, an important component in synchronising the clock to the daily light changes, leads to the flies being more sensitive to temperature changes. This could help to explain why daily light changes, which are a more reliable time cue compared to the daily temperature fluctuations, are the dominant signal in nature for synchronising the clock.

This study is reported today in the journal Current Biology.

Explore further: Sall4 is required for DNA repair in stem cells

More information: 'Cryptochrome antagonizes synchronization of Drosophila's circadian clock to temperature cycles' will be published in the journal Current Biology on Thursday 17 January.

Related Stories

Recommended for you

Sall4 is required for DNA repair in stem cells

32 minutes ago

A protein that helps embryonic stem cells (ESCs) retain their identity also promotes DNA repair, according to a study in The Journal of Cell Biology. The findings raise the possibility that the protein, Sall4, ...

Desmoplakin's tail gets the message

33 minutes ago

Cells control the adhesion protein desmoplakin by modifying the tail end of the protein, and this process goes awry in some patients with arrhythmogenic cardiomyopathy, according to a study in The Journal of ...

Looking for alternatives to antibiotics

1 hour ago

Bacteria that talk to one another and organize themselves into biofilms are more resistant to antibiotics. Researchers are now working to develop drugs that prevent bacteria from communicating.

How is the membrane protein folded?

1 hour ago

A key factor in the biosynthesis and stable expression of multi-pass transmembrane proteins was discovered, and its loss is thought to cause retinal degeneration. The factor works especially for multi-pass ...

Unlocking the key to immunological memory in bacteria

2 hours ago

A powerful genome editing tool may soon become even more powerful. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) have unlocked the key to how bacteria are able to "steal" genetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.