Resolving the internal structure of nanoparticle dimers linked by DNA

January 16, 2013
Resolving the Internal Structure of Nanoparticle Dimers Linked by DNA
Figure A: Calculated distribution of interparticle separation, r, for dimers linked by either one or four DNA chains. The average separation decreased with increasing number of particle-connecting chains.

Light and x-ray scattering experiments have revealed the structure of nanoparticle dimers linked by flexible DNA chains. These dimers were basic units in a multi-scale,hierarchical assembly, and served as a model system to understand DNA-mediated interactions, particularly in the non-trivial regime when the nanoparticle and DNA links were comparable in size. We found that the interparticle separation within the dimer was primarily controlled by the number of linking DNA. Researchers summarize their findings in a simple model that captured the interplay of the number of DNA bridges, their length,the curvature of the nanoparticle, and the excluded volume effects. We demonstrated excellent agreement of our analytical model with both our experimental and computational results, without use of free parameters in the model.  

As building blocks in multi-scale assemblies, DNA-linked nanoparticle dimers are excellent model systems to understand chain-mediated interactions between particles.  The results of this study can serve to guide the design of precisely controlled distances within nanoscale clusters; such control is imperative for energy transfer and bio-detection functionalities, among other applications.

Figure B: Simulation protocol for dimer formation of two DNA-coated NPs connected by four linkers. (a) Two DNA-coated NPs and four linkers (pink strands) are located at random positions. (b) Four strands of one hemisphere of each NP are randomly selected. (c) Hybridization occurs between the linkers and strands of the left NP. (d) Hybridization with second NP followed by equilibration.

Details:

  • CFN Capabilities: X-rays cattering at CFN/ X9 Endstation, UV-Vis, Dynamic Light Scattering, and TEM allowed for investigations of the self-assembly processes of the DNA linked dimers.  CFN/NSLS X9 Endstation and Dynamic Light Scattering also facilitated in-situ probing of the interparticle distance within the .
  • When nanoparticles and are of comparable size, the inter-particle separation within a dimer deviate from a free-chain behavior: in that case, the well-established dependence on the chain length is suppressed due to the presence of multiple DNA connections between the highly curved surfaces of the nanoparticles.  Our analytical model exhibits excellent agreement with both experimental and computational results.

Explore further: New DNA-Based Technique For Assembly of Nano- and Micro-sized Particles

More information: Cheng, C. et al. Internal Structureof Nanoparticle Dimers Linked by DNA. ACS Nano 6 (8), 6793-6802 (2012).
pubs.acs.org/doi/abs/10.1021%2Fnn301528h

Related Stories

Switchable Nanostructures Made with DNA

December 21, 2009

(PhysOrg.com) -- Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have found a new way to use a synthetic form of DNA to control the assembly of nanoparticles — this time resulting in switchable, ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.