'Green chemistry' using carbon dioxide, low-cost catalysts: New way of producing potent carbon–boron synthetic reagents

January 25, 2013
In a new demonstration of ‘green chemistry’, researchers have used copper catalysts to turn waste carbon dioxide (CO2), alkyne molecules and boron complexes into a uniquely shaped ring system suitable for organic synthesis

Because carbon dioxide (CO2) gas is a freely available resource, there are concerted efforts worldwide to convert this molecule into a chemical feedstock. Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have made important progress toward this goal by developing the first protocol for attaching both CO2 and boron atoms to unsaturated carbon–carbon triple bonds. This procedure uses inexpensive organic–copper catalysts to construct valuable 'building blocks' for chemists under mild, one-pot conditions.

The strong inside CO2 make this molecule particularly inert and hard to use in most chemical reactions. Current tactics have focused on using to catalyze addition of electron-rich organic 'nucleophiles' to CO2's central carbon atom. This technique has successfully generated simple . However, production of more complex substances containing non-hydrocarbon atoms has remained mostly out of reach.

Hou and his team used a groundbreaking approach to help turn CO2 into organoboron reagents—valuable because of the wide number of transformations possible at carbon–boron bonds. First, they turned alkynes, molecules with carbon–carbon triple bonds, into nucleophiles. Nucleophilic species are highly reactive with many types of chemical groups but they are also difficult to control. To achieve necessary precision, the team used N-heterocyclic (NHC) copper complexes, a hybrid organic/inorganic system with a strong track record of catalyzing CO2 additions.

X-ray experiments revealed that the strategy had paid off: NHC–copper complexes could indeed catalyze the addition of CO2 and diborane molecules to alkynes through a three-step catalytic insertion process. This reaction generates a final product with a unique, previously unknown cyclic structure containing a boron atom, a carbon–carbon double bond and a carboxyl group that the authors termed 'boralactone'.

By tweaking the structure of the NHC–copper catalyst, the researchers were able to apply the technique to a wide range of alkyne-type molecules with no side reactions. Intriguingly, the catalyst delivered the same geometric arrangement—high regio- and stereoselectivity—no matter which substituents were attached to the carbon triple bond. Hou explains that this advantageous behavior occurs because the diborane–catalyst complex always attacks the alkyne bond from a specific direction due to electronic interactions. Furthermore, the cyclic boralactone helps to drive this selectivity.

"Our reaction may serve as an attractive method for the synthesis of multifunctional alkenes, as it uses CO2 and easily available alkynes as building blocks with a relatively cheap copper catalyst," concludes Hou.

Explore further: Transforming carbon dioxide gas into valuable building block for organic synthesis

More information: References:
Zhang, L., Cheng, J., Carry, B. & Hou, Z. Catalytic boracarboxylation of alkynes with diborane and carbon dioxide by an N-heterocyclic carbene copper catalyst. Journal of the American Chemical Society 134, 14314–14317 (2012). pubs.acs.org/doi/abs/10.1021/ja3063474

Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792–5795 (2008). onlinelibrary.wiley.com/doi/10.1002/anie.200801857/abstract

Related Stories

Economizing chemistry, atom by atom

February 3, 2012

In chemistry, downsizing can have positive attributes. Reducing the number of steps and reagents in synthetic reactions, for example, enables chemists to boost their productivity while reducing their environmental footprint. ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.