New information on binding gold particles over metal oxide surfaces

Jan 22, 2013
Figure Atomic structure.

The strong binding of gold on electronically modified calcium oxide can now be understood in detail. In a computational study, researchers at the University of Jyväskylä Nanoscience Center have shown how redox chemistry entirely determines the adsorption strength of gold on the modified oxide where one metal atom is replaced with molybdenum.

The research team applied the so-called Born-Haber cycle to analyse how different terms contribute to adsorption energy. The calculations were done at the supercomputers of the CSC – IT Center of Science by employing quantum mechanical simulation methods.

In the oxide lattice, the molybdenum atom donates two electrons into the oxide. When a gold atom adsorbs on the oxide surface, a redox reaction takes place. In this process, a third electron transferred by the dopant is gained by gold, and energy is released. By varying the dopant among several atoms, the researchers found that the amount of energy released linearly correlates with the ability of the dopant to give an electron. The trend can be used to estimate how much a guest atom stabilises gold adsorption without calculating the adsorption energy.

The research results are important for understanding catalyst-support interaction. The results fully support the where have been seen to form flat structures over modified surfaces. A similar Born-Haber cycle, as applied in this study, can also be employed to analyse oxide-catalysed chemical reactions that follow the redox mechanism.

Catalysts are commonly used by industry, for instance, in the production of fuels, plastics, fertilisers and other similar products. Metal oxide surfaces are widely used as support materials for particles. The binding properties and shape of metal nanoparticles sensitively depend on the interaction between the support and the catalyst. By tuning this interaction, it is possible to affect the number and properties of catalytically active sites, or even create new sites. One way to modify the interaction is to dope the oxide with guest that can donate extra electrons into a material.

Explore further: New, more versatile version of Geckskin: Gecko-like adhesives now useful for real world surfaces

More information: Andersin, J. et al. The Redox Chemistry of Gold with High-Valence Doped Calcium Oxide, Angewandte Chemie International Edition, Article first published online: 12 DEC 2012, DOI: 10.1002/anie.201208443 . http://onlinelibrary.wiley.com/doi/10.1002/anie.201208443/abstract

add to favorites email to friend print save as pdf

Related Stories

The finest gold dust in the world

May 30, 2012

(Phys.org) -- Scientists at the Vienna University of Technology found a method to locate single gold atoms on a surface. This should pave the way to better and cheaper catalysts.

For clean air

Mar 30, 2007

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...