Exotic new chemical compound could be useful in batteries, semiconductors, electronic memory devices

January 24, 2013

Northwestern University graduate student Jonathan Barnes had a hunch for creating an exotic new chemical compound, and his idea that the force of love is stronger than hate proved correct. He and his colleagues are the first to permanently interlock two identical tetracationic rings that normally are repelled by each other. Many experts had said it couldn't be done.

On the surface, the rings hate each other because each carries four positive charges (making them tetracationic). But Barnes discovered by introducing radicals (unpaired electrons) onto the scene, the researchers could create a love-hate relationship in which love triumphs.

Unpaired electrons want to pair up and be stable, and it turns out the attraction of one ring's single electrons to the other ring's single electrons is stronger than the repelling forces.

The process links the rings not by a but by a mechanical bond, which, once in place, cannot easily be torn asunder.

The study detailing this new class of stable organic radicals will be published Jan. 25 by the journal Science.

"It's not that people have tried and failed to put these two rings together—they just didn't think it was possible," said Sir Fraser Stoddart, a senior author of the paper. "Now this molecule has been made. I cannot overemphasize Jonathan's achievement—it is really outside the box. Now we are excited to see where this new chemistry leads us."

Sir Fraser is the Board of Trustees Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. In the late 1980s, he was one of the early pioneers to introduce an additional type of bond, the mechanical bond, into .

The new Northwestern compound has attractive electronic characteristics and can be made quickly and inexpensively. Down the road, it may be possible to expand this first linked pair into a longer chain-like where this methodology could be useful in new technologies for batteries, semiconductors and electronic memory devices.

Driven by curiosity, Barnes only began to look at the radical chemistry of the ring cyclobis (paraquat-p-phenylene) two years ago, nearly 25 years after the ring was first made.

"I wondered what would happen if we took it all the way to the max," said Barnes, the paper's first author and a member of Stoddart's group. "Can we take two of these rings, each with four positive charges, and make them live together?"

The rings repel each other like the positive poles of two magnets. Barnes saw an opportunity where he thought he could tweak the chemistry by using radicals to overcome the hate between the two rings.

"We made these rings communicate and love each other under certain conditions, and once they were mechanically interlocked, the bond could not be broken," Barnes said.

Barnes' first strategy—adding electrons to temporarily reduce the charge and bring the two rings together—worked the first time he tried it. He, Stoddart and their colleagues started with a full ring and a half ring that they then closed up around the first ring (using some simple chemistry), creating the mechanical bond.

When the compound is oxidized and electrons lost, the strong positive forces come roaring back—"It's hate on all the time," Barnes said—but then it is too late for the rings to be parted. "That's the beauty of this system," he added.

Most organic radicals possess short lifetimes, but this unusual radical compound is stable in air and water. The compound tucks the electrons away inside the structure so they can't react with anything in the environment. The tight mechanical bond endures despite the unfavorable electrostatic interactions.

The two interlocked rings house an immense amount of charge in a mere cubic nanometer of space. The compound, a homo[2]catenane, can adopt one of six oxidation states and can accept up to eight electrons in total.

"Anything that accepts this many has possibilities for batteries," Barnes said.

"Applications beckon," Stoddart agreed. "Now we need to spend more time with materials scientists and people who make devices to see how this amazing compound can be used."

Explore further: Unprecedented formation of a boron-boron covalent bond opens a new corner of chemistry

More information: "A Radically Configurable Six-State Compound," Science, 2013.

Related Stories

Forget exomoons. Let’s talk exorings

November 25, 2011

In an article earlier this month, I discussed the potential for discovering moons orbiting extrasolar planets. I’d used an image of an exoplant system with rings, prompting one reader to ask if those would be possible ...

Cassini Finds Possible Origin of One of Saturn's Rings

August 2, 2007

Cassini scientists may have identified the source of one of Saturn's more mysterious rings. Saturn's G ring likely is produced by relatively large, icy particles that reside within a bright arc on the ring's inner edge.

Recommended for you

Turning CO2 to stone

October 25, 2016

Earth has limits to the amount of carbon dioxide in its atmosphere before the environment as we know it starts to change. Too much CO2 absorbed by the oceans makes the water more acidic. Too much in the atmosphere warms the ...


Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (12) Jan 24, 2013
How hard is it to include images of molecules for us chemists to enjoy? It's not like a bunch of obscure equations, but a Tinker Toy diagram any kid can understand.
3.7 / 5 (6) Jan 24, 2013
If the original press release didn't include a picture you're unlikely to see one here. Physorg aggregates science news - it doesn't author it.

If you're really interested I'm certain if you email the author of "A Radically Configurable Six-State Compound" (Jonathan Barnes at Northwest University) will provide you a copy of the article.
3.7 / 5 (6) Jan 24, 2013
Yay! More "better battery possibility." God when will we get off the fossil fuels? :-)
1 / 5 (5) Jan 24, 2013
awesome work, horribly written article.
1.5 / 5 (4) Jan 25, 2013
WealthyChef, you miss the point.
If it's good for making a re-chargeable battery then it can be used to store energy from solar or other sources, but it doesn't remove the need in the first place for an energy source.
Batteries only store energy, they do not create it, and even for a non-rechargeable battery energy is required in the manufacturing process to create the chemicals that react to produce the electricity.
2.3 / 5 (6) Jan 25, 2013
How hard is it to include images of molecules for us chemists to enjoy?
The picture of this compound is here.
not rated yet Jan 27, 2013
This is another discovery that strikes me (and others, it seems) as potentially important. Great work to the grad student who envisioned and created this stuff!
not rated yet Jan 29, 2013
the stoddard group is pretty awesome:

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.