Dying brightly: Fluorescence lights up cells programmed to die

Jan 25, 2013

Programmed cell death, or apoptosis, occurs tens of millions of times every day in every human body. Researchers in South Korea have devised an easy method to detect apoptotic cells by fluorescence, as they report in Chemistry—An Asian Journal. Their method makes it easier to detect improper biological regulation of apoptosis, which can lead to neurodegenerative diseases, autoimmune diseases, and cancer.

Apoptosis is involved in macroscopic as well. For example, in an embryo, the cells between fingers die by apoptosis to form individual digits, and the tail of a tadpole is resorbed by apoptosis when it metamorphoses into a frog.

Upon apoptosis, the relative composition of the outside and inside of the cell membrane changes, and one component, phosphatidylserine (PS), migrates from the interior to the exterior. Kyo Han Ahn and collaborators at Pohang University of Science and Technology designed an artificial membrane vesicle that fluoresces when it interacts with PS. This so-called is held together by a polydiacetylene backbone and is decorated with zinc atoms at its periphery. The zinc atoms interact with PS but not with other components of the . This interaction distorts the shape of the backbone, causing fluorescence of the liposome. The "turn on" effect eliminates washing steps to remove extra fluorescent marker, making the method easy to use. The selectivity of the interaction means that only apoptotic cells are marked fluorescently. Microscopy images show that the fluorescence is localized on the cell surface, confirming the mode of interaction between liposome and PS.

Explore further: Treating pain by blocking the 'chili-pepper receptor'

More information: Cho, Y. et al. Turn-On Fluorescence Detection of Apoptotic Cells Using a Zinc(II)-Dipicolylamine-Functionalized Poly(diacetylene) Liposome, Chemistry - An Asian Journal. dx.doi.org/10.1002/asia.201201139

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

2 hours ago

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0