Dying brightly: Fluorescence lights up cells programmed to die

January 25, 2013

Programmed cell death, or apoptosis, occurs tens of millions of times every day in every human body. Researchers in South Korea have devised an easy method to detect apoptotic cells by fluorescence, as they report in Chemistry—An Asian Journal. Their method makes it easier to detect improper biological regulation of apoptosis, which can lead to neurodegenerative diseases, autoimmune diseases, and cancer.

Apoptosis is involved in macroscopic as well. For example, in an embryo, the cells between fingers die by apoptosis to form individual digits, and the tail of a tadpole is resorbed by apoptosis when it metamorphoses into a frog.

Upon apoptosis, the relative composition of the outside and inside of the cell membrane changes, and one component, phosphatidylserine (PS), migrates from the interior to the exterior. Kyo Han Ahn and collaborators at Pohang University of Science and Technology designed an artificial membrane vesicle that fluoresces when it interacts with PS. This so-called is held together by a polydiacetylene backbone and is decorated with zinc atoms at its periphery. The zinc atoms interact with PS but not with other components of the . This interaction distorts the shape of the backbone, causing fluorescence of the liposome. The "turn on" effect eliminates washing steps to remove extra fluorescent marker, making the method easy to use. The selectivity of the interaction means that only apoptotic cells are marked fluorescently. Microscopy images show that the fluorescence is localized on the cell surface, confirming the mode of interaction between liposome and PS.

Explore further: Dominant cholesterol-metabolism ideas challenged by new research

More information: Cho, Y. et al. Turn-On Fluorescence Detection of Apoptotic Cells Using a Zinc(II)-Dipicolylamine-Functionalized Poly(diacetylene) Liposome, Chemistry - An Asian Journal. dx.doi.org/10.1002/asia.201201139

Related Stories

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(Phys.org)—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.