Researchers use DNA sequencing to learn why some corals are more heat tolerant

Jan 08, 2013 by Bob Yirka report
Pillar coral, Dendrogyra cylindricus. Image: NOAA

(Phys.org)—Researchers working out of the Hopkins Marine Station at Stanford University have found that the ability of some corals to withstand higher water temperatures appears to be gene based. In their paper published in the Proceedings of the National Academy of Sciences, the group outline how they compared two types of corals commonly found in a reef in American Samoa, and found that those that are more heat resistant tend to express more gene types during normal temperature conditions.

Scientists the world over agree that global atmospheric temperatures are rising and along with them are rising ocean temperatures. Because of this, those who study the seas and the organisms that live in them have been scrambling to try to find tools to help discern which will be impacted by rising temperatures and which won't. Doing so might help direct conservation efforts.

In this new research, the researchers looked to reefs off Ofu Island in American Samoa for help. Because of unique physical characteristics, pools of water exist at different temperatures and some experience extreme temperature variations on a daily basis. In studying the corals that live there, the team discovered that some of the corals did poorly as temperatures rose, while others seemed to thrive – this despite being very closely related. Suspecting that an answer might lie in their , the researchers collected some samples and took them back to their lab.

The samples were put in water tanks and subjected to variable water . Each was also tested for via RNA testing using a technique known as Illumina sequencing. In studying the results of their analysis, the researchers found that all of the corals expressed hundreds of genes when exposed to higher than normal temperatures. But they also found that those that were more heat resistant also expressed approximately 60 of those same genes during normal temperature exposure as well – the team refers to this as "front-loading." They suggest that the corals give themselves the upper hand in dealing with environmental changes by expressing more genes during normal times that might help in dealing with whatever changes may come about.

The team suggests their findings may help with future conservation efforts as continue to rise. By focusing resources on those most likely to survive, the hope is that more sea creatures can be saved in the long run.

Explore further: Australia out of step with new climate momentum

More information: Genomic basis for coral resilience to climate change, PNAS, Published online before print January 7, 2013, doi: 10.1073/pnas.1210224110

Abstract
Recent advances in DNA-sequencing technologies now allow for in-depth characterization of the genomic stress responses of many organisms beyond model taxa. They are especially appropriate for organisms such as reef-building corals, for which dramatic declines in abundance are expected to worsen as anthropogenic climate change intensifies. Different corals differ substantially in physiological resilience to environmental stress, but the molecular mechanisms behind enhanced coral resilience remain unclear. Here, we compare transcriptome-wide gene expression (via RNA-Seq using Illumina sequencing) among conspecific thermally sensitive and thermally resilient corals to identify the molecular pathways contributing to coral resilience. Under simulated bleaching stress, sensitive and resilient corals change expression of hundreds of genes, but the resilient corals had higher expression under control conditions across 60 of these genes. These "frontloaded" transcripts were less up-regulated in resilient corals during heat stress and included thermal tolerance genes such as heat shock proteins and antioxidant enzymes, as well as a broad array of genes involved in apoptosis regulation, tumor suppression, innate immune response, and cell adhesion. We propose that constitutive frontloading enables an individual to maintain physiological resilience during frequently encountered environmental stress, an idea that has strong parallels in model systems such as yeast. Our study provides broad insight into the fundamental cellular processes responsible for enhanced stress tolerances that may enable some organisms to better persist into the future in an era of global climate change.

Press release

Related Stories

Study finds seasonal seas save corals with 'tough love'

Nov 29, 2007

Finally, some good news about the prospects of coral reefs in the age of climate change. According to a new study by the Wildlife Conservation Society, corals may actually survive rising ocean temperatures ...

Heat and cold damage corals in their own ways, study shows

Feb 02, 2012

Around the world coral reefs are facing threats brought by climate change and dramatic shifts in sea temperatures. While ocean warming has been the primary focus for scientists and ocean policy managers, cold events can also ...

Corals and climate change

Aug 22, 2007

A modest new lab at the Rosenstiel School is the first of its kind to tackle the global problem of climate change impacts on corals. Fully operational this month, this new lab has begun to study how corals ...

Multiple partners not the only way for corals to stay cool

Jan 20, 2012

Recent experiments conducted at the Australian Institute of Marine Science (AIMS) produced striking results, showing for the first time that corals hosting a single type of "zooxanthellae" can have different levels of thermal ...

Recommended for you

Gold rush an ecological disaster for Peruvian Amazon

5 hours ago

A lush expanse of Amazon rainforest known as the "Mother of God" is steadily being destroyed in Peru, with the jungle giving way to mercury-filled tailing ponds used to extract the gold hidden underground.

Australia out of step with new climate momentum

7 hours ago

Australian Prime Minister Tony Abbott, who rose to power in large part by opposing a tax on greenhouse gas emissions, is finding his country isolated like never before on climate change as the U.S., China ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.