Toward a better cyanide antidote for terrorist attacks and other mass casualty events

January 30, 2013

In an advance toward closing a major gap in defenses against terrorist attacks and other mass casualty events, scientists are reporting discovery of a promising substance that could be the basis for development of a better antidote for cyanide poisoning. Their report, which describes a potential antidote that could be self-administered, much like the medication delivered by allergy injection pens, appears in ACS' Journal of Medicinal Chemistry.

Steven E. Patterson, Ph.D., and colleagues at the University of Minnesota Center for Drug Design explain that the only existing antidotes for cyanide—recognized as a high-risk substance for potential use by terrorists—must be administered by intravenous infusion. That procedure requires highly trained paramedical personnel and takes time. Cyanide, however, is a fast-acting poison. In a situation involving , only a limited number of victims could be saved. Patterson's team thus sought an antidote that could be administered by intra-muscular (IM) injection, a simpler procedure that could be administered rapidly to a large number of victims or even be self-administered.

Their report describes discovery of a substance, sulfanegen TEA, "which should be amenable for development as an IM injectable antidote suitable for treatment of cyanide victims in a mass casualty setting. Further development, including efficacy in lethal cyanide animal models, will be reported at a later date."

Explore further: Plants and caterpillars make the same cyanide

More information: "Cyanide Antidotes for Mass Casualties: Water-Soluble Salts of the Dithiane (Sulfanegen) from 3- Mercaptopyruvate for Intramuscular Administration", J. Med. Chem., Just Accepted Manuscript, DOI: 10.1021/jm301633x

Current cyanide antidotes are all administered by IV infusion, a suboptimal procedure in a mass casualty setting. Therefore, in a cyanide disaster from a chemical accident or an act of terrorism, intramuscular (IM) injectable antidotes would be more appropriate. It has become clear that our lead cyanide antidote, viz., sulfanegen sodium, is insufficiently water-soluble for the IM mode of administration. We now report the discovery of the highly water-soluble sulfanegen triethanolamine salt, with greater than a 4-fold increase in solubility and increase in potency compared to the parent sulfanegen sodium, thus offering a promising lead for development as an IM injectable cyanide antidote.

Related Stories

Plants and caterpillars make the same cyanide

April 13, 2011

( -- With an amazing example of convergent evolution, Niels Bjerg Jensen of the University of Copenhagen published a report in Nature Communications discussing the bird's-foot trefoil plant and the burnet moth ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.