Courant's Marateck describes math theory behind Higgs boson finding

Jan 04, 2013 by James Devitt

Lost in the exhilaration surrounding this summer's presumed discovery of the Higgs boson, the subatomic particle that is a building block of the universe, were the theoretical clues that led to the breakthrough.

In an article that appeared last summer in the Notices of the , Samuel Marateck, a senior lecturer at NYU's Courant Institute of Mathematical Sciences, unpacks scholarship dating back to the era following World War I that provided the scientific foundation for the search.

For some time, physicists have been searching for the , the only particle of the Standard Model of Particle Physics that scientists had yet to detect. The describes the universe in terms of its and the forces between them.

The hunt was primarily conducted in the Large Hadron Collider (LHC), located at the laboratory near Geneva, Switzerland. But mathematical physicists had, decades ago, laid a theoretical groundwork that ultimately gave physicists clues of where and how to look.

The initial, formal underpinning, Marateck writes, was the Yang-Mills theory, formulated in 1954. Chen Ning Yang and Robert Mills invented what was then a new type of particle field strength based on the electro-magnetic one—a contribution that would allow physicists to obtain a calculable result in future analyses.

However, the Yang-Mills theory had a significant shortcoming. The particles it hypothesized had to have zero mass—that is, they must be weightless. These hypothesized particles belong to the particle family called bosons, and the only zero-mass bosons are photons. Given the theory's limitations, it lay dormant for a decade, Marateck explains, until others found a way to give these bosons mass.

Three different research teams working independently in the 1960s updated Yang-Mills by devising a theory that not only imparted mass to bosons, but also hypothesized a new particle. This particle became known as the Higgs boson, named after Peter Higgs, one of these researchers. The addition by Higgs and others offered a way to explain why atoms have weight.

The apparent discovery of the Higgs boson should now provide fundamental insights into why particles have mass. It has been dubbed the "God particle" because it is associated with an energy field that gives other their mass, or resistance.

Explore further: 'Moral victories' might spare you from losing again

add to favorites email to friend print save as pdf

Related Stories

The hunt for the Higgs steps up a gear

Aug 28, 2008

The hunt for the Higgs boson, the most highly sought-after particle in physics, received a boost this month with the release of two new results from the Tevatron particle collider at the US Department of Energy's ...

A closer look at the Higgs boson

Jul 04, 2012

Scientists working at the world's biggest atom smasher near Geneva have announced the discovery of a new subatomic particle that looks remarkably like the long-sought Higgs boson. Sometimes called the "God p ...

Physicists closing in on the elusive Higgs boson

Aug 17, 2011

Scientists at a meeting in Grenoble, France, recently stoked speculation that physicists at the world's biggest particle accelerator may soon provide a first look at the elusive Higgs boson - the final piece of evidence needed ...

Recommended for you

Affirmative action elicits bias in pro-equality Caucasians

22 hours ago

New research from Simon Fraser University's Beedie School of Business indicates that bias towards the effects of affirmative action exists in not only people opposed to it, but also in those who strongly endorse equality.

Narcissistic CEOs and financial performance

Jul 24, 2014

Narcissism, considered by some as the "dark side of the executive personality," may actually be a good thing when it comes to certain financial measures, with companies led by narcissistic CEOs outperforming those helmed ...

Election surprises tend to erode trust in government

Jul 24, 2014

When asked who is going to win an election, people tend to predict their own candidate will come out on top. When that doesn't happen, according to a new study from the University of Georgia, these "surprised losers" often ...

User comments : 0