Cotton-ball clouds contained: New modeling method captures clouds' shading effects

Jan 15, 2013
Cotton-ball-like cumuli cloud effects are now captured in a regional climate model. Credit: U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility

(Phys.org)—Small clouds equal big impact. Researchers at Pacific Northwest National Laboratory designed an update to a frequently used computer model that represents the impact of small, puffy, fair-weather clouds on the amount of sunshine reaching Earth's surface. The new method includes variations in temperature and humidity near the surface and their role in forming these small clouds. Their method offers improved climate forecasts and better cloud prediction, including the amount of sunshine the clouds reflect.

Commonly seen clouds over oceans and land look like stretched-out cotton balls. These shallow clouds reflect the sun's energy back to space. Because they are so small, researchers have not been able to track their reflecting properties through . Improved understanding of the impact of these fair-weather clouds will provide scientists with more detailed information on weather and climate that was frequently misread.  

Previously, these clouds were too small to calculate in regional modeling tools.

"Our 'model grid box' is like a large fish net," said PNNL's Dr. Larry Berg, lead scientist. "Previously these puffy, fair-weather clouds, like small fish, fell through the netting and were never caught. With this new method, that is no longer the case."

Researchers first used the and Forecasting (WRF) model, a regional model that takes a detailed look at clouds and weather features. Their aim was to calculate the impact of fair-weather clouds, also known as shallow cumulus, on the current model results. After finding that WRF couldn't represent the small clouds, scientists were able to revise the model code to include the missing clouds and their impact. The most substantial change was to replace the default trigger function, an on/off switch used to determine if formed, with one that accounts for small changes in temperature and humidity near the surface.

The new method, called the Cumulus Potential (CuP) methodology, was implemented in the WRF to account for all properties of the clouds, including the amount of sunlight reaching the Earth. After incorporating CuP into the WRF , the team then compared their results to data archived by the U.S. DOE's Atmospheric Radiation Measurement (ARM) Climate Research Facility.

Scientists plan to use the new modified approach to conduct long-term simulations of conditions over the Southern Great Plains and the Tropical Western Pacific Atmospheric Radiation Measurement (ARM) Climate Research Facility sites. These tests will allow researchers to more fully evaluate the performance of the new method and better define the impact of the fair-weather on Earth.

Explore further: 2014 Antarctic ozone hole holds steady

More information: Berg, L., et al. 2012. "Evaluation of a Modified Scheme for Shallow Convection: Implementation of CuP and Case Studies." Monthly Weather Review 141:134-147. DOI:10.1175/MWR-D-12-00136.1

add to favorites email to friend print save as pdf

Related Stories

The proof is in the clouds

Jan 26, 2012

For most people, clouds are just an indication of whether it's a "good" or "bad" day. A team of scientists from Pacific Northwest National Laboratory found that certain clouds hold the key to climate behavior ...

Down-and-dirty details of climate modeling

May 04, 2011

For the first time, researchers have developed a comprehensive approach to look at aerosols—those fine particles found in pollution—and their effect on clouds and climate. Scientists from Pacific ...

New tool clears the air on cloud simulations

Oct 26, 2011

(PhysOrg.com) -- Climate models have a hard time representing clouds accurately because they lack the spatial resolution necessary to accurately simulate the billowy air masses.

Recommended for you

2014 Antarctic ozone hole holds steady

14 hours ago

The Antarctic ozone hole reached its annual peak size on Sept. 11, according to scientists from NASA and the National Oceanic and Atmospheric Administration (NOAA). The size of this year's hole was 24.1 million ...

New study finds oceans arrived early to Earth

17 hours ago

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet's surface and are home to the world's greatest diversity of life. While water is essential for life ...

Magma pancakes beneath Lake Toba

17 hours ago

Where do the tremendous amounts of material that are ejected to from huge volcanic calderas during super-eruptions actually originate?

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.