Cotton-ball clouds contained: New modeling method captures clouds' shading effects

Jan 15, 2013
Cotton-ball-like cumuli cloud effects are now captured in a regional climate model. Credit: U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility

(Phys.org)—Small clouds equal big impact. Researchers at Pacific Northwest National Laboratory designed an update to a frequently used computer model that represents the impact of small, puffy, fair-weather clouds on the amount of sunshine reaching Earth's surface. The new method includes variations in temperature and humidity near the surface and their role in forming these small clouds. Their method offers improved climate forecasts and better cloud prediction, including the amount of sunshine the clouds reflect.

Commonly seen clouds over oceans and land look like stretched-out cotton balls. These shallow clouds reflect the sun's energy back to space. Because they are so small, researchers have not been able to track their reflecting properties through . Improved understanding of the impact of these fair-weather clouds will provide scientists with more detailed information on weather and climate that was frequently misread.  

Previously, these clouds were too small to calculate in regional modeling tools.

"Our 'model grid box' is like a large fish net," said PNNL's Dr. Larry Berg, lead scientist. "Previously these puffy, fair-weather clouds, like small fish, fell through the netting and were never caught. With this new method, that is no longer the case."

Researchers first used the and Forecasting (WRF) model, a regional model that takes a detailed look at clouds and weather features. Their aim was to calculate the impact of fair-weather clouds, also known as shallow cumulus, on the current model results. After finding that WRF couldn't represent the small clouds, scientists were able to revise the model code to include the missing clouds and their impact. The most substantial change was to replace the default trigger function, an on/off switch used to determine if formed, with one that accounts for small changes in temperature and humidity near the surface.

The new method, called the Cumulus Potential (CuP) methodology, was implemented in the WRF to account for all properties of the clouds, including the amount of sunlight reaching the Earth. After incorporating CuP into the WRF , the team then compared their results to data archived by the U.S. DOE's Atmospheric Radiation Measurement (ARM) Climate Research Facility.

Scientists plan to use the new modified approach to conduct long-term simulations of conditions over the Southern Great Plains and the Tropical Western Pacific Atmospheric Radiation Measurement (ARM) Climate Research Facility sites. These tests will allow researchers to more fully evaluate the performance of the new method and better define the impact of the fair-weather on Earth.

Explore further: Retreat of Yakutat Glacier

More information: Berg, L., et al. 2012. "Evaluation of a Modified Scheme for Shallow Convection: Implementation of CuP and Case Studies." Monthly Weather Review 141:134-147. DOI:10.1175/MWR-D-12-00136.1

add to favorites email to friend print save as pdf

Related Stories

The proof is in the clouds

Jan 26, 2012

For most people, clouds are just an indication of whether it's a "good" or "bad" day. A team of scientists from Pacific Northwest National Laboratory found that certain clouds hold the key to climate behavior ...

Down-and-dirty details of climate modeling

May 04, 2011

For the first time, researchers have developed a comprehensive approach to look at aerosols—those fine particles found in pollution—and their effect on clouds and climate. Scientists from Pacific ...

New tool clears the air on cloud simulations

Oct 26, 2011

(PhysOrg.com) -- Climate models have a hard time representing clouds accurately because they lack the spatial resolution necessary to accurately simulate the billowy air masses.

Recommended for you

Retreat of Yakutat Glacier

3 hours ago

Located in the Brabazon Range of southeastern Alaska, Yakutat Glacier is one of the fastest retreating glaciers in the world. It is the primary outlet for the 810-square kilometer (310-square mile) Yakutat ...

NASA sees Tropical Storm Lowell's tough south side

23 hours ago

The south side of Tropical Storm Lowell appears to be its toughest side. That is, the side with the strongest thunderstorms, according to satellite imagery from NOAA's GOES-14 and NASA-NOAA's Suomi NPP satellites.

User comments : 0