One step closer to hydrogen production from photoelectrochemical water-splitting

Jan 16, 2013 by Mark Wilson

In the quest to produce an environmentally benign renewable fuel, scientists have explored many techniques to split water molecules to produce hydrogen. Still, the current photovoltaic designs are not yet technically or economically viable. Materials research in this area has been promising, but research on the engineering design of these photoelectrochemical systems has been sparse.

To advance this part of the puzzle, a team including Lawrence Berkeley National Laboratory (Berkeley Lab) researchers Sophia Haussener and Adam Weber recently conducted design research at the Joint Center for (JCAP) and published their results in Energy and Environmental Sciences. The team used a validated multi-physics numerical model to examine two photochemical water-splitting designs. Haussener is now at Ecole Polytechnique Federale, Lausanne, Switzerland.

The modeling revealed important information about the design impacts of these systems. For example, the use of transparent-conducting-oxide layers on top of the photoactive semiconductor resulted in smaller ohmic loss (voltage drop) across the cell. Ohmic losses were also reduced through smaller electrode lengths, larger electrolyte heights, and thinner separators. In addition, the research team found that electrolyte and product crossover, which limit the system's ability to keep the split hydrogen and from recombining, was determined by the system's operational condition and pressure differentials over the system's separators. The researchers concluded that controlling the morphology of the separator could potentially reduce this crossover and improve hydrogen yields. Further research is planned.

Explore further: Repeated self-healing now possible in composite materials

More information: pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee23187e

add to favorites email to friend print save as pdf

Related Stories

Novel alloy could produce hydrogen fuel from sunlight

Aug 30, 2011

Scientists from the University of Kentucky and the University of Louisville have determined that an inexpensive semiconductor material can be "tweaked" to generate hydrogen from water using sunlight.

Turning sunlight into fuel

Feb 24, 2011

"At the California Institute of Technology, they're developing a way to turn sunlight and water into fuel for our cars," President Barack Obama said in his State of the Union address. He was referring to the Joint Center ...

Selenium makes more efficient solar cells

Aug 03, 2010

Call it the anti-sunscreen. That's more or less the description of what many solar energy researchers would like to find -- light-catching substances that could be added to photovoltaic materials in order ...

Cheap hydrogen fuel from seawater may be a step closer

Apr 29, 2010

(PhysOrg.com) -- A new catalyst has been developed to generate hydrogen from water cheaply, but the research was originally intended to make molecules that behaved like magnets. Hydrogen is a clean power source ...

Recommended for you

Metals go from strength to strength

23 hours ago

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Chemists achieve molecular first

23 hours ago

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...