Chemical probe finds fungal organism function: Activity-based protein profiling suggests how fungus becomes pathogenic

Jan 04, 2013
Aspergillus fumigatus is a common fungus. Most people breathe in its spores every day without being affected; however, in people with lung diseases or weakened immune systems, it causes the disease Aspergillosis. Credit: Centers for Disease Control

(Phys.org)—Two unique chemical probes designed at Pacific Northwest National Laboratory are helping scientists find how a pathogenic organism responsible for a severe lung infection thrives in human serum. These probes use multiplexed activity-based protein profiling (ABPP), which revealed significant changes in Aspergillus fumigatus metabolism and stress response when placed in culture with human serum over time.

A. fumigatus spores are ubiquitous in the atmosphere, and everybody inhales an estimated several hundred spores each day. But for people whose immune response is compromised from taking , by irradiation or malnutrition, or by diseases such as cancer or AIDS, this opportunistic pathogen is responsible for pulmonary invasive aspergillosis (IA). Patients with IA are usually critically ill, and the disease is difficult to cure.

The PNNL team hypothesized that A. fumigatus uses human serum, the clear fluid that remains after blood is allowed to clot, as a nutrient and that within the serum impacts the organism's metabolism, nutrient sensing, and scavenging response within an immunocompromised host environment. They simultaneously used two novel activity-based chemical probes they designed and constructed to target the reactivity of A. fumigatus during growth. The team found that probe-protein reactivity changes in the presence or absence of human serum.

The information provides valuable insight into how A. fumigatus survives in a host environment on a fundamental level. During the course of IA, the fungus' filamentous structure breaches and interacts with serum, where it readily grows because of its unique ability to extract iron from human transferrin in an iron-limited environment. Furthermore, A. fumigatus can use serum proteins as building blocks for growth, but the full effect of serum on its and its relevance to disease are not fully understood.

"We are demonstrating that we can compare two systems or one organism under multiple conditions to tease out more information about protein regulation," said Dr. Susan Wiedner, a PNNL Linus Pauling Distinguished Postdoctoral Fellow, and lead author of the paper published in The Journal of Biological Chemistry.

The scientists wanted to determine which proteins interact with a small-molecule activity-based probe. "We found that under two different growth conditions, the number and identity of proteins that interact with the probes change drastically," said Wiedner. "We could measure the abundance of probe-labeled proteins by liquid chromatography-mass spectrometry (LC-MS) -based proteomics and see profiles of labeled proteins based on growth condition."

Various approaches to LC-MS-based proteomics have emerged. In a typical global analysis, thousands of proteins are measured from a complex proteome. However, by using ABPP, scientists can target a subset of a few hundred proteins from the complex proteome.

"ABPP is a more directed approach than using global proteomics," said Wiedner. "We can look at the difference of probe-labeled protein abundances among various systems and conditions. This then tells us more about the system's biology, such as the differences between probe-reactivity of metabolic proteins. Some fungal proteins interact more with the probe in the presence of human serum, which tells us something about what metabolism might be doing under those conditions." A direct comparison of a global analysis and an ABPP analysis showed differences in measured proteins detected by ABPP that were not detected by global analysis.

In turn, this can lead to more in-depth studies such as generating gene knock-out mutants and performing enzymatic assays, all of which could be used to develop effective treatments and detection of IA.

Over the last two decades, ABPP development has been a growing but still-small field. PNNL has one of the groups working on this, led by PNNL chemist Dr. Aaron Wright, senior author on this paper.

Currently, PNNL scientists are developing ABPP probes and supporting bioinformatics capabilities to measure cellulose degradation in microbial communities. ABPP can be useful for a variety of things including target validation of drug candidates and protein inhibitor discovery.

Said Wright, "Probes can compete with known drugs for protein-binding sites, which results in drug target and drug off-target validation. Some probes are broad, like those used in this study. But some can be very selective for an enzyme class. We can design the probe based on the enzyme class being targeted. We used a multiplexed approach here, where two probes were used simultaneously to target more than one type of . Previous studies only use one ABP at a time for proteome analysis."

Explore further: Video: How did life on Earth begin?

More information: Wiedner, S. et al., Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum. The Journal of Biological Chemistry, 2012, 287(40):33447-33459. DOI: 10.1074/jbc.M112.394106.

Related Stories

MIT probe may help untangle cells' signaling pathways

Jun 27, 2008

MIT researchers have designed a new type of probe that can image thousands of interactions between proteins inside a living cell, giving them a tool to untangle the web of signaling pathways that control most of a cell's ...

Chemical probes beat antibodies at own game

Apr 26, 2007

A new way of detecting biological structures could help in the fight against disease. The new method, developed by scientists at Oxford University, uses chemistry to assemble proteins into ‘protein probes’ ...

Shedding light on photosynthesis

Apr 04, 2012

(PhysOrg.com) -- Imagine being able to monitor protein expression levels in a cell as they change over time and in response to external stimuli. That is just what researchers did when they studied the photosynthetic ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0