Chemical modules that mimic predator-prey and other behaviors

January 9, 2013
Chemical modules that mimic predator-prey and other behaviors

Scientists are reporting development of chemical modules that can reproduce, on an "unprecedented" molecular level, changes and interactions that occur in natural populations of plants and animals, including those of hunting and being hunted for food, conducting mutually beneficial relationships and competing for resources. The report on these new "predator-prey biochemical oscillators," which could become building blocks for molecular machines and computers, appears in ACS Nano.

Yannick Rondelez and Teruo Fujii explain that just as plants and animals interact in complex ways in vast "ecosystems" in nature, molecules, such as small synthetic , can be made to interact in complex ways within test tubes. Therefore, animal behaviors, like hunting (as a predator) and being hunted (as prey), could also be applied to molecules, they say. Currently, researchers can build simple circuits with molecules. But to make complex molecular machines and computers (which would provide information-processing ability to wet systems), they need to understand and control how groups of molecules interact with each other, as animals do in nature.

The scientists describe reproducing predator-prey interactions, mutually and competitive conditions using DNA and enzymes that build up or break down DNA. "Therefore, beside opening the way to the study of fundamental issues of chemical dynamic systems, we also expect that this approach will provide a useful building block in the scaling-up of molecular computers and machines," they say.

Explore further: Scientists build a better DNA molecule

More information: "Predator-Prey Molecular Ecosystems" ACS Nano, Article ASAP. DOI: 10.1021/nn3043572

Biological organisms use intricate networks of chemical reactions to control molecular processes and spatiotemporal organization. In turn, these living systems are embedded in self-organized structures of larger scales, for example, ecosystems. Synthetic in vitro efforts have reproduced the architectures and behaviors of simple cellular circuits. However, because all these systems share the same dynamic foundations, a generalized molecular programming strategy should also support complex collective behaviors, as seen, for example, in animal populations. We report here the bottom-up assembly of chemical systems that reproduce in vitro the specific dynamics of ecological communities. We experimentally observed unprecedented molecular behaviors, including predator–prey oscillations, competition-induced chaos, and symbiotic synchronization. These synthetic systems are tailored through a novel, compact, and versatile design strategy, leveraging the programmability of DNA interactions under the precise control of enzymatic catalysis. Such self-organizing assemblies will foster a better appreciation of the molecular origins of biological complexity and may also serve to orchestrate complex collective operations of molecular agents in technological applications.

Related Stories

Scientists build a better DNA molecule

May 27, 2008

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute’s Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, ...

Scientists find universal rules for food-web stability

August 6, 2009

The findings, published in this week's issue of Science, conclude that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ...

Molecule reorganises itself for new functions

August 22, 2012

( -- The discovery of a synthetic molecule, made up of 60 simple components that are able to reorganise themselves to produce new functions, will lead to better understanding of nature's processes.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.