Accelerating cellular assembly lines

Jan 02, 2013
By selecting antibodies (blue and yellow) with strong affinity for particular targets, scientists can label or isolate proteins of interest, or even modulate the function of those proteins in living cells. © iStockphoto.com/IngramPublishing

The immune system generates antibodies to mark threats that need to be eliminated, and these protein complexes bind their targets with remarkable strength and selectivity. Scientists have learned how to generate cell lines that can produce large quantities of specific 'monoclonal' antibodies (mAbs) with desirable properties; these mAbs are powerful tools for diagnostics, medicine and biological research.

The selection of suitable cell lines is an important aspect of large-scale production, as these can vary considerably in their individual mAb output. To assist in maximizing the generation of these precious molecules, Ying Swan Ho's team at the A*STAR Bioprocessing Technology Institute in Singapore has identified key features of top-performing cells in mAb-producing cultures.

Previous efforts have sought that might affect production, but Ho and co-workers instead devised a strategy that allowed them to directly compare levels of metabolically active molecules present in Chinese hamster ovary (CHO) cells that secrete large or small amounts of a given mAb. "This approach enabled us to gain a deeper insight into the metabolic milieu that supports recombinant protein production in mammalian cell cultures," explains Ho.

The researchers cultivated CHO clones that were either high or low mAb producers, where productivity differed by up to 28-fold. They observed clear differences between the two groups in levels of molecules associated with several key . For example, high-producer clones contained elevated levels of compounds associated with the electron transport chain, a mechanism that generates the adenosine triphosphate (ATP) molecules that power virtually every cellular process.

As energy and mAb production ramp up, cells also generate large quantities of molecules known as reactive , which can inflict serious damage on the cell. This threat can be neutralized by molecules such as reduced glutathione (GSH). Ho and co-workers determined that high producers of mAbs also generated greater amounts of GSH than their low-production counterparts.

These findings offer a more global view into how CHO cells might brace themselves to handle the rigors of large-scale protein synthesis. The researchers now intend to explore the individual contributions of these various metabolic pathways. "This will be done by evaluating the effects of increasing the cellular pools of these metabolites on mAb productivity in different cell lines," says Ho. With a deeper understanding of the key pathways, scientists should be able to either improve the selection of mAb-producing clones or modify culture conditions to ensure that the cells can work as hard as possible.

Explore further: How plant cell compartments change with cell growth

More information: Chong, W. P. K., Thng, S. H., Hiu, A. P., Lee, D.-Y., Chan, E. C. Y. & Ho, Y. S. LC-MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells. Biotechnology and Bioengineering 109, 3103–3111 (2012). onlinelibrary.wiley.com/doi/10… 2/bit.24580/abstract

add to favorites email to friend print save as pdf

Related Stories

Chemists get grip on slippery lipids

Aug 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

New powerful tool measures metabolites in living cells

Mar 08, 2012

By engineering cells to express a modified RNA called "Spinach," researchers have imaged small-molecule metabolites in living cells and observed how their levels change over time. Metabolites are the products of individual ...

Recommended for you

How plant cell compartments change with cell growth

1 hour ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

1 hour ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

2 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

2 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0