How cells know when it's time to eat themselves

January 17, 2013
An electron microscope image of a mammalian cell with organelles depicted. In autophagy, some elements of a cell are degraded and recycled to generate nutrients and energy to sustain and preserve the whole cell. Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine have identified a molecular mechanism regulating autophagy, a fundamental stress response used by cells to help ensure their survival in adverse conditions.

The findings are published online in the January 17 issue of Cell.

Senior author Kun-Liang Guan, PhD, a professor of pharmacology at UC San Diego Moores Cancer Center, and colleagues report that an enzyme called AMPK, typically involved in sensing and modulating energy use in cells, also regulates autophagic enzymes.

Autophagy, which derives from the Greek words for "self" and "eat," is triggered to protect cells when times are tough, such as when cells are starved for nutrients, infected or suffering from damaged , such as and mitochondria. Much like the human body in freezing conditions will reduce operations in extremities to preserve core temperatures and organ functions, cellular autophagy involves the degradation and synthesis of some internal cellular elements to ensure survival of the whole.

The scientists found that AMPK regulates different complexes of an enzyme class called Vps34 kinase in different ways. Some Vps34 enzymes are involved in normal cellular vesicle trafficking – the vital movement of molecules inside a cell. Other Vps34 complexes are involved in autophagy. Guan and colleagues say AMPK inhibits some non-autophagy enzymes, but activates autophagous ones.

The study more fully illuminates a process essential to healthy cell function and survival. "Autophagy is an important way for cells to clear damaged parts that could be harmful to them and to digest parts for nutrients when cells are experiencing starvation conditions," Guan said.

More broadly, he noted that "defects in autophagy have been associated with human disease, such as cancer and neurodegenerative disorders." Failure of normal autophagy has also been associated with accumulated cell damage and aging.

Explore further: Identification of new genes shows a complex path to cell death

Related Stories

Cell recycling protects tumor cells from anti-cancer therapy

March 6, 2008

Cells have their own recycling system: Discarded cellular components, from individual proteins through to whole cellular organs, are degraded and the building blocks re-used in a different place. The scientific term for this ...

Recommended for you

A 100-million-year partnership on the brink of extinction

May 24, 2016

A relationship that has lasted for 100 million years is at serious risk of ending, due to the effects of environmental and climate change. A species of spiny crayfish native to Australia and the tiny flatworms that depend ...

Is aging inevitable? Not necessarily for sea urchins

May 25, 2016

Sea urchins are remarkable organisms. They can quickly regrow damaged spines and feet. Some species also live to extraordinary old ages and—even more remarkably—do so with no signs of poor health, such as a decline in ...

Why fruit fly sperm are giant

May 25, 2016

In the animal kingdom, sperm usually are considerably smaller than eggs, which means that males can produce far more of them. Large numbers of tiny sperm can increase the probability of successful fertilization, especially ...

Automating DNA origami opens door to many new uses

May 27, 2016

Researchers can build complex, nanometer-scale structures of almost any shape and form, using strands of DNA. But these particles must be designed by hand, in a complex and laborious process.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.