Cell: Protein folding via charge zippers

Jan 18, 2013
Like the teeth of a zipper, the charged amino acids (red, blue) form connections between protein segments. In this way, they can form pores in the cell membrane. Credit: (Figure: KIT)

Membrane proteins are the "molecular machines" in biological cell envelopes. They control diverse processes, such as the transport of molecules across the lipid membrane, signal transduction, and photosynthesis. Their shape, i.e. folding of the molecules, plays a decisive role in the formation of, e.g., pores in the cell membrane. In the Cell magazine, researchers of Karlsruhe Institute of Technology and the University of Cagliari are now reporting a novel charge zipper principle used by proteins to form functional units.

"It is fascinating to see the elegant basic principles that are used by nature to construct molecular assemblies," explains Anne Ulrich, Director of the KIT Institute for Biological Interfaces. "A charge zipper between the charged is an entirely unexpected mechanism used by to neutralize their charges such that they can be immersed into hydrophobic cell membranes."

In the study published now, Ulrich and her team investigate the so-called Twin-arginine translocase (Tat) that is used in the of bacteria as an export machinery for folded proteins. Several TatA subunits assemble as a pore that can adapt its diameter to the size of the cargo to be transported. "But how can such a pore be built up from TatA proteins? How can they reversibly form a huge hole in the membrane for a variety of molecules to pass through, but without causing leakage of the cell?", Ulrich formulates the questions studied.

To answer these questions, the researchers studied the molecular structure of TatA protein from the bacterium B. subtilis, which consists of a chain of 70 . The analysis showed that it folds into a rather rigid, rod-shaped helix that is followed by a flexible, extended stretch. Many amino acids in the helix and the adjacent stretch carry positive or negative charges. Surprisingly, the sequence of charges on the helix is complementary to those in the adjacent stretch of the protein. When the protein is folded up at the connection point like a pocket knife, positive and will always meet and attract each other. Hence, the protein links up both of its segments, similar to the interlocking teeth of a zipper.

"The clou is that this binding principle also works with the neighboring proteins," Ulrich says. Instead of folding up alone, every TatA protein also forms charge zippers with both of its neighbors. Computer simulations showed that this leads to stable and, at the same time, flexible connections between the adjacent molecules. In this way, any number of proteins can be linked together to form an uncharged ring, which thus lines the TatA pore in the hydrophobic membrane. This novel charge zipper principle does not only seem to play a role in protein transport, but also in the attack of certain antimicrobial peptides on bacteria, or in their formation of biofilms as a response to stress.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: DOI: 10.1016/j.cell.2012.12.017

add to favorites email to friend print save as pdf

Related Stories

Putting light-harvesters on the spot

Oct 19, 2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schunemann has de ...

Proteins find their way with address label and guide

Feb 23, 2011

Most newly produced proteins in a cell need to be transported to the proper place before they can be put to work. For proteins to find their way, they have a built-in signal linked to them, a kind of address ...

Scientists map one of life's molecular mysteries

Jan 26, 2012

All living organisms are made up of cells, behind these intricate life forms lie complex cellular processes that allow our bodies to function. Researchers working on protein secretion — a fundamental process in biology ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.