Bacteria to spot pollution

Jan 17, 2013 by By Anthony King
Bacteria to spot pollution

Scientists are recruiting bacteria to spot pollutants spilling into our rivers and lakes.

Natural such as bacteria engineered to detect pollution and placed in a self-contained portable box could be the most effective way to track pollutants. Such devices are being developed as part of BIOMONAR, an EU-funded project which follows on from its predecessors, ECODIS and TOXICHIP. "Bacteria like all living beings have very specific sensory proteins, which enable the [bacterial] cell to find its way around and detect toxic or edible chemicals," Jan van der Meer, project microbiologist at the University of Lausanne, Switzerland, tells youris.com.

The project team relied on bacteria coupled to a molecular reporter system that is easily visible. As a result, bacteria light up through once the target chemicals are sensed. "Much of what we do is designing and testing , small pieces of DNA which contain the necessary information for the cell to produce the reporter signal in response to the environmental target compound," says van der Meer. For example, he has developed a to detect arsenic as a contaminant in drinking water by genetically engineering .

Nevertheless, this approach has limitations. Biosensors developed by project scientists do not reveal what is in the water; just that it is toxic to the , which is sometimes all we need to know. However, this method compares favourably to previously developed sensors. "The advantage of live cells is that they can report biological effects, in other words they can tell you what a feels," comments Shimshon Belkin, a project scientist at the Hebrew University of Jerusalem, Israel, adding: "no chemical method can provide this information."

Besides, these kits could help go beyond regulatory requirements. "Regulations would mandate testing of maybe 100 chemicals, but you test only for these chemicals. If you get chemical 101, you will never find it, because you will not be specifically looking for it," Belkin tells youris.com, "but these toxicity assays will discover its presence."

However, industry is unlikely to adopt this approach unless mandated by authorities. There is a need for "clear legislation that will ask the user in industry to [follow] pollution quickly and frequently," comments Gérald Thouand, a scientist at the University of Nantes, France, not connected to the project. He is working on bacterial sensors for detecting heavy metal pollutants in waste waters from treatment plants.

There are further challenges that still must be overcome before the bacterial alarms are widely deployed. "You can use genetically modified microorganisms for your own use in the laboratory and in some cases in a closed and defined area, but not in the environment. It is very, very difficult," adds Thouand. Indeed, releasing live species into the environment is very different from a containment process in a lab, concurs Brian Wynne, professor of science studies at Lancaster University, UK. "I think people will rightly ask questions about whether we can trust the containment process," he tells youris.com. But he notes that microorganisms may well prove easier to contain than genetically modified crop plants.

The next big problem scientists must address, notes Thouand, is the problem of mixed pollutants. "A pollutant can be more toxic or less toxic when in contact with other chemicals. For the environment, we need to address this problem in the decades to come and only live cells will answer the problem."

Explore further: Bacteria 'hotwire their genes' to fix a faulty motor

add to favorites email to friend print save as pdf

Related Stories

Dip chip technology tests toxicity on the go

May 14, 2012

From man-made toxic chemicals such as industrial by-products to poisons that occur naturally, a water or food supply can be easily contaminated. And for every level of toxic material ingested, there is some level of bodily ...

Tadpoles Used to Rapidly Detect Water Pollution

Dec 03, 2009

(PhysOrg.com) -- Research conducted by University of Wyoming Professor Paul Johnson and others demonstrates that genetically modified tadpoles work well as sensitive monitors for rapidly detecting water pollution.

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

21 hours ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

22 hours ago

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

22 hours ago

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

New study shows safer methods for stem cell culturing

Feb 25, 2015

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.