Breath test identifies bacteria's fingerprint

Jan 10, 2013

(Phys.org)—Scientists have identified the chemical 'fingerprints' given off by specific bacteria when present in the lungs, potentially allowing for a quick and simple breath test to diagnose infections such as tuberculosis.

Publishing their study today in the Journal of Breath Research, the researchers have successfully distinguished between different types of bacteria, as well as different strains of the same bacteria, in the lungs of mice by analysing the (VOCs) present in exhaled breath.

It is hoped that a simple could reduce the diagnosis time of lung infections from days and weeks to just minutes.

Co-author of the paper, Jane Hill, from the University of Vermont, said: "Traditional methods employed to diagnose bacterial infections of the lung require the collection of a sample that is then used to grow bacteria. The isolated colony of bacteria is then biochemically tested to classify it and to see how resistant it is to antibiotics.

"This whole process can take days for some of the common bacteria and even weeks for the causative agent for tuberculosis. would reduce the time-to-diagnosis to just minutes"

Clinicians see breath-testing as an attractive method for diagnosing disease due to its ease of use and non-invasiveness. Scientists have already investigated breath-based diagnostics for multiple cancers, asthma and diabetes.

In this study, the researchers, from the University of Vermont, analysed the VOCs given off by and , both of which are common in acute and chronic lung infections.

They infected mice with the two bacteria and sampled their breath after 24 hours. The VOCs were analysed using a technique called secondary electrospray ionization mass spectrometry (SESI-MS), which is capable of detecting VOCs down to parts per trillion.

They found a statistically significant difference between the breath profiles of the mice infected with the bacteria and the mice that were uninfected. The two different species of bacteria could also be distinguished to a statistically significant level, as could the two different strains of the P. aeruginosa that were used.

They hypothesise that in the lungs produce unique VOCs that are not found in regular human breath due to their differing metabolism.

"We have strong evidence that we can distinguish between bacterial infections of the lung in mice very effectively using the breathprint SESI-MS approach and I suspect that we will also be able to distinguish between bacterial, viral and fungal infections of the .

"To that end, we are now collaborating with colleagues to sample patients in order to demonstrate the strengths, as well as limitations, of breath analysis more comprehensively," continued Hill.

Explore further: Sweet-smelling breath to help diabetes diagnosis in children

More information: "Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints" J. Breath Res. 7 016003 iopscience.iop.org/1752-7163/7/1/016003

Related Stories

Breath test could possibly diagnose colorectal cancer

Dec 05, 2012

A new study published in BJS has demonstrated for the first time that a simple breath analysis could be used for colorectal cancer screening. The study is part of the "Improving Outcomes in Gastrointestinal Cancer" supple ...

New device uses gold nanoparticles to test for lung cancer

Nov 17, 2011

The metabolism of lung cancer patients is different than the metabolism of healthy people. And so the molecules that make up cancer patients' exhaled breath are different too. A new device pioneered at the University of Colorado ...

Stomach ulcer bug causes bad breath

Nov 24, 2008

Bacteria that cause stomach ulcers and cancer could also be giving us bad breath, according to research published in the December issue of the Journal of Medical Microbiology. For the first time, scientists have found Helico ...

UVC light kills wound bacteria

Jul 23, 2012

Ultraviolet (UVC) light can eradicate wound-infecting bacteria on mice increasing both survival and healing rates, according to a paper in the July 2012 issue of Antimicrobial Agents and Chemotherapy. The light did not da ...

Recommended for you

New material makes water and oil roll off

59 minutes ago

Car finish, to which no dirt particles adhere, house fronts, from which graffiti paints roll off, and shoes that remain clean on muddy paths – the material "fluoropore" might make all this possible. Both ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

martinwolf
not rated yet Jan 13, 2013
So James Lovelocks little hand held device to measure various volatiles at the ocean air interface has evolved beyond a simple gas chromatograph to a medical diagnostic tool...how cool is that.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.