An organic alternative to oxides? Organic ferroelectric molecule shows promise for memory chips, sensors

Jan 24, 2013
Electrical response overlaid on the newly characterized organic molecular crystal. Credit: Jiangyu Li, University of Washington

A cheap, flexible organic molecule could replace inorganic crystals as the working parts for memory chips, sensors and energy-harvesting systems.

At the heart of computing are tiny crystals that transmit and store digital information's ones and zeroes. Today these are hard and brittle materials. But cheap, flexible, nontoxic may play a role in the future of hardware.

A team led by the University of Washington in Seattle and the Southeast University in China discovered a molecule that shows promise as an organic alternative to today's silicon-based semiconductors. The findings, published this week in the journal Science, display properties that make it well suited to a wide range of applications in memory, sensing and low-cost .

"This molecule is quite remarkable, with some of the key properties that are comparable with the most popular inorganic crystals," said co-corresponding author Jiangyu Li, a UW associate professor of mechanical engineering.

The new carbon-based material could offer even cheaper ways to store digital information; provide a flexible, nontoxic material for medical sensors that would be implanted in the body; and create a cheaper, lighter material to harvest energy from natural vibrations.

The new molecule is a ferroelectric, meaning it is positively charged on one side and negatively charged on the other, where the direction can be flipped by applying an . Synthetic are now used in some displays, sensors and .

In the study the authors pitted their new molecule against , a long-known ferroelectric material that is a standard for performance. Barium titanate is a ceramic crystal and contains titanium; it has largely been replaced in industrial applications by better-performing but lead-containing alternatives.

The new molecule holds its own against the standard-bearer. It has a natural polarization, a measure of how strongly the molecules align to store information, of 23, compared to 26 for barium titanate. To Li's knowledge this is the best organic ferroelectric discovered to date.

A recent study in Nature announced an organic ferroelectric that works at room temperature. By contrast, this molecule retains its properties up to 153 degrees Celsius (307 degrees F), even higher than for barium titanate.

The new molecule also offers a full bag of electric tricks. Its dielectric constant – a measure of how well it can store energy – is more than 10 times higher than for other organic ferroelectrics. And it's also a good piezoelectric, meaning it's efficient at converting movement into electricity, which is useful in sensors.

The new molecule is made from bromine, a natural element isolated from sea salt, mixed with carbon, hydrogen and nitrogen (its full name is diisopropylammonium bromide). Researchers dissolved the elements in water and evaporated the liquid to grow the crystal. Because the molecule contains carbon, it is organic, and pivoting chemical bonds allow it to flex.

The molecule would not replace current inorganic materials, Li said, but it could be used in applications where cost, ease of manufacturing, weight, flexibility and toxicity are important.

Li is working on a number of projects relating to ferroelectricity. Last year he and his graduate student found the first evidence for ferroelectricity in soft animal tissue. He was co-author on a 2011 paper in Science that documents nanometer-scale switching in ferroelectric films, showing how such could be used to store digital information.

"Ferroelectrics are pretty remarkable materials," Li said. "It allows you to manipulate mechanical energy, electrical energy, optics and electromagnetics, all in a single package."

He is working to further characterize this new molecule and explore its combined electric and mechanical properties. He also plans to continue the search for more organic ferroelectrics.

Explore further: How to test the twin paradox without using a spaceship

More information: "Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal," by D.-W. Fu et al. Science, 2013.

Related Stories

Recommended for you

How to test the twin paradox without using a spaceship

1 minute ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

wealthychef
not rated yet Jan 24, 2013
An organic alternative to oxides? Um, no: "The molecule would not replace current inorganic materials, Li said."

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...