Reconciling agronomic production, water-saving and soil preservation

January 25, 2013

Unexpectedly, some crops such as maize or rapeseed have been found to act as carbon sinks, extracting CO2 from the atmosphere. However, others like sunflower and silage maize are carbon sources. These are the main conclusions of a study carried out by a research team from the Centre d'études spatiales de la biosphère. Over seven years, researchers measured the carbon and water fluxes of two experimental field plots. Their results show that the environmental impact of agriculture can be reduced by the right cropping practices, making it possible for agriculture to reconcile environmental and agronomic objectives. This work was published in Agricultural and Forestry Meteorology on 15 January 2013.

The of a crop and its soil carbon sequestration capability have become essential criteria for . This is why the CESBIO researchers sought to measure carbon and use efficiency for three main European crops: wheat, silage maize (for the production of ) and sunflower. They selected two plots located in the French départements of Gers and Haute-Garonne and equipped them with instruments to measure agronomic and meteorological variables (light levels, temperature, soil water content, etc.) and fluxes of CO2 and water between the atmosphere and the agroecosystem (the cultivated field).

To assess the water and carbon "accounts" of these cultivated plots, two indices were calculated. The first, a conventional index in agronomy, analyzed the amount of biomass produced and exported for each plot per unit of water consumed. The second, an environmental index, was much more innovative: it measured the amount of carbon lost or captured on the plot per unit of water consumed. This index covered net CO2 flux, carbon imports due to organic fertilization, and exports due to harvest. In other words, it determined whether a crop was a sink or source of carbon. These analyses were carried out over several years of crop cultivation and also took into account any periods when the soil was left bare (uncultivated).

From an agronomic perspective, cultivation of silage maize provides the best return, by producing up to 1.3 grams of carbon per liter of water consumed, against 0.65 grams for wheat, and 0.2 grams for sunflower. However, from an environmental perspective, wheat, which has a longer cycle, captures more carbon in the soil, sequestering up to 1 gram of carbon per liter of water consumed. By contrast, (short cycle) sunflower and silage maize have a negative balance: they cause soil carbon impoverishment and thereby become net producers of greenhouse gases.

This work shows that the right cropping practices (choice of crop species, presence of intermediary crops, mulching, etc.), production methods and ultimately, dietary habits, make it possible to reduce the environmental impact of agriculture.

The researchers plan to study how these indices are impacted by the introduction, between two main crops, of intermediary crops (mustard, faba bean, etc.), which can capture the soil's mineral resources and make them available for the following crop. It is likely that this practice would increase CO2 capture, but reduce the availability of water resources for subsequent crops. These hypotheses will be tested within the framework of the GHG-Europe and ICOS European projects, which aim to provide a long-term understanding of the global cycle and greenhouse gas emissions from different plant covers in Europe.

Explore further: Managing carbon loss

More information: Tallec, T. et al. Crops' water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agricultural and Forestry Meteorology, 15 January 2013.

Related Stories

Managing carbon loss

December 3, 2008

As the United States continues to develop alternative energy methods and push towards energy independence, cellulosic-based ethanol has emerged as one of the most commercially viable technologies. Corn stover remains the ...

ARS Explores Ways to Keep Carbon in the Soil

December 3, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists are testing out alternative ways of tilling the soil and rotating crops to see if they can help wheat farmers in Oregon sequester more carbon in the soil and ...

Energy crops impact environmental quality

April 4, 2010

Crop residues, perennial warm season grasses, and short-rotation woody crops are potential biomass sources for cellulosic ethanol production. While most research is focused on the conversion of cellulosic feeedstocks into ...

US greenhouse gas emissions and capture, regionally

August 12, 2010

A new report, Agriculture's Role in Greenhouse Gas Emissions and Capture, commissioned by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, examines the evidence for greenhouse ...

Crop breeding could 'slash CO2 levels'

August 3, 2011

Writing in the journal Annals of Botany, Professor Douglas Kell argues that developing crops that produce roots more deeply in the ground could harvest more carbon from the air, and make crops more drought resistant, while ...

Farming commercial miscanthus

August 31, 2011

An article in the current issue of Global Change Biology Bioenergy examines the carbon sequestration potential of Miscanthus plantations on commercial farms.

Recommended for you

Global index proposed to avoid delays on climate policies

August 4, 2015

Professor David Frame, Director of Victoria's Climate Change Research Institute (CCRI), has co-authored a paper published today in the high profile international scientific journal Nature Climate Change. The paper argues ...

Researchers investigate increased ocean acidification

August 3, 2015

The primary cause of global ocean acidification is the oceanic absorption of CO2 from the atmosphere. Although this absorption helps to mitigate some of the effects of anthropogenic climate change, it has resulted in a reduction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.