Aftershocks to Philippine quake found within nearby megathrust fault

Jan 15, 2013

On 31 August 2012 a magnitude 7.6 earthquake ruptured deep beneath the sea floor of the Philippine Trench, a powerful intraplate earthquake centered seaward of the plate boundary. In the wake of the main shock, sensors detected a flurry of aftershocks, counting 110 in total.

Drawing on observations and rupture mechanisms calculated for the aftershocks, Ye et al. find that many were located near the epicenter of the main intraplate quake, but at shallower depth and all involving normal faulting. Some shallow thrusting aftershocks were located farther to the west, centered within the potentially dangerous megathrust fault formed by the subduction of the beneath the Philippine Microplate, the piece of crust housing the Philippine Islands.

In the past century, the most have occurred within megathrust faults. The particular portion of the megathrust fault nearest to the 31 August intraplate earthquake, and the section that housed the shallow thrusting aftershocks, have not had a strong earthquake since at least 1600. That from the main intraplate shock took place within the interplate boundary suggests that the two systems may be coupled.

Previous research in other locales suggests that the rupture of a nearby megathrust fault sometimes follows on the heels of a large offshore intraplate thrust earthquake. Similarly, previous research has found that the stress accumulation that could lead to the rupture of an intraplate thrust earthquake can at least in part be explained by the build-up of stress in a nearby interplate boundary.

The authors suggest that more work needs to be done to identify whether there is an accumulating slip deficit within the Philippine Trench megathrust fault.

Explore further: Deciphering clues to prehistoric climate changes locked in cave deposits

More information: Intraplate and interplate faulting interactions during the August 31, 2012, Philippine Trench earthquake (Mw 7.6) sequence, Geophysical Research Letters, doi: 10.1029/2012GL054164 , 2012

Related Stories

Unusual earthquake gave Japan tsunami extra punch

May 24, 2011

The magnitude 9 earthquake and resulting tsunami that struck Japan on March 11 were like a one-two punch – first violently shaking, then swamping the islands – causing tens of thousands of deaths ...

Loma Prieta fault not so weak?

Dec 19, 2007

A new study adds to evidence that the fault responsible for the 1989 Loma Prieta earthquake is not as unusually weak as had been thought.

Relationship between two recent New Zealand earthquakes

Sep 26, 2011

The relationship between two earthquakes that took place near Christchurch, New Zealand, in September 2010 and February 2011 is examined in a paper published in Scientific Reports. The findings suggest that t ...

Why do earthquakes stop?

Feb 06, 2008

The underlying structure of a fault determines whether an earthquake rupture will jump from one fault to another, magnifying its size and potential devastation. Understanding why some earthquakes terminate along a fault, ...

Recommended for you

Quake rattles nerves in Napa Valley after 2014 disaster

May 22, 2015

A magnitude-4.1 earthquake has jolted Napa Valley and became an unwelcome reminder of the wine country's large temblor last summer—the strongest quake to hit Northern California in a quarter-century.

Image: Cambodian rivers from orbit

May 22, 2015

A flooded landscape in Cambodia between the Mekong River (right) and Tonlé Sap river (left) is pictured by Japan's ALOS satellite. The centre of this image is about 30 km north of the centre of the country's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.