X-rays pinpoint drug target for Helicobacter pylori

December 10, 2012
This diagram shows the first-ever glimpse of the six-molecule ring of urea channels embedded in the membrane of a type of bacteria called Helicobacter pylori. Understanding the structure of the urea channels will allow researchers to design future drugs to target this bacteria, which harm hundreds of millions of people worldwide. Credit: Hartmut Luecke / UC Irvine

(Phys.org)—Experiments at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have revealed a potential new way to attack common stomach bacteria that cause ulcers and significantly increase the odds of developing stomach cancer.

The breakthrough, made using powerful X-rays from SLAC's Stanford Synchrotron Radiation Lightsource (), was the culmination of five years of research into the bacterium , which is so tough it can live in strong stomach acid. At least half the world's population carries H. pylori and hundreds of millions suffer health problems as a result; current treatments require a complicated regimen of stomach-acid inhibitors and antibiotics.

"We were looking for a means to disrupt H. pylori's own mechanism for protecting itself against stomach acid," said Hartmut "Hudel" Luecke, a researcher at the University of California, Irvine, and principal investigator on the paper, published online Dec. 9 in Nature. With this study, he said, "We have deciphered the three-dimensional molecular structure of a very promising drug target."

An isolated look at the structure of the six-molecule ring of urea channels embedded in the membrane of Helicobacter pylori. Urea passes through the center of each of the six channel molecules. The center of the ring is filled with a lipid bilayer plug. Credit: Hartmut Luecke / UC Irvine

Luecke and his team zeroed in on tiny channels that H. pylori uses to allow in urea from gastric juice in the stomach; it then breaks this compound into ammonia, which neutralizes . Blocking the channels would disable this protective system, leading to a new treatment for people with the infection.

Solving the structure of the protein to find the specific area to target wasn't easy. The channels are formed by the protein embedded in the bacterium's cell membrane, and membrane proteins are notoriously difficult to crystallize, which is a prerequisite for using , the main technique for determining protein structures. This technique bounces X-rays off of the electrons in the crystallized protein to generate the experimental data used to build a 3-D map showing how the protein's atoms are arranged.

A 3-D view of a newly understood molecular structure in the stomach bacterium Helicobacter pylori, built with data derived from protein crystallography experiments at the Stanford Synchrotron Radiation Lightsource (SSRL). Credit: Hartmut Luecke / UC Irvine

The challenge with is that they are especially hard to grow good quality crystals of, and for this experiment, said Luecke, "We needed to grow and screen thousands of crystals."

"We collected over 100 separate data sets and tried numerous structural determination techniques," said Mike Soltis, head of SSRL's Structural Molecular Biology division, who worked with Luecke and his team to create the 3-D map of the atomic structure. The final data set was measured at SSRL's highest brightness beam line (12-2), which produced the critical data that met the challenge.

"This is the hardest structure I've ever deciphered, and I've been doing this since 1984," Luecke said. "You have to try all kinds of tricks, and these crystals fought us every step of the way. But now that we have the structure, we've reached the exciting part—the prospect of creating specific, safe and effective ways to target this pathogen and wipe it out."

Explore further: New pathogen from pigs' stomach ulcers

More information: The research paper is available online from Nature: www.nature.com/nature/journal/vaop/ncurrent/full/nature11684.html

Related Stories

New pathogen from pigs' stomach ulcers

June 9, 2008

Scientists have isolated a new bacterium in pigs' stomachs thanks to a pioneering technique, offering hope of new treatments to people who suffer with stomach ulcers, according to research published in the June issue of the ...

Going from ulcers to cancer

August 22, 2008

Researchers have uncovered a big clue as to why some of the bacteria that cause stomach ulcers pose a greater risk for serious problems like stomach cancer than others; it turns out these bacteria can exploit the surrounding ...

Important defense against stomach ulcer bacterium identified

October 13, 2009

A special protein in the lining of the stomach has been shown to be an important part of the body's defense against the stomach ulcer bacterium Helicobacter pylori in a new study from the Sahlgrenska Academy at the University ...

Closing in on an ulcer- and cancer-causing bacterium

December 7, 2011

A research team led by scientists at the Chinese University of Hong Kong is releasing study results this week showing how a bacterium, Helicobacter pylori, that causes more than half of peptic ulcers worldwide and that has ...

Recommended for you

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Calcium channel blockers caught in the act at atomic level

August 24, 2016

An atomic level analysis has revealed how two classes of calcium channel blockers, widely prescribed for heart disease patients, produce separate therapeutic effects through their actions at different sites on the calcium ...

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

Selecting the right house plant could improve indoor air

August 24, 2016

Indoor air pollution is an important environmental threat to human health, leading to symptoms of "sick building syndrome." But researchers report that surrounding oneself with certain house plants could combat the potentially ...

LiH mediates low-temperature ammonia synthesis

August 24, 2016

Nearly half of the world's population is fed by industrial N2 fixation, i. e., the Harbor-Bosch process. Although exergonic in nature, NH3 synthesis from N2 and H2 catalyzed by the fused Fe has to be conducted at elevated ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dschlink
not rated yet Dec 10, 2012
An excellent piece of work and a well-written article.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.