World-first UHF IGZO Schottky diode presented: Breakthrough achievement towards low-cost passive thin-film RFID tags

Dec 12, 2012
Imec’s world-first ultrahigh frequency IGZO Schottky diode.

At this week's IEEE International Electron Devices Meeting (IEDM 2012), imec presented the world-first ultra-high frequency Schottky diode based on amorphous IGZO (Indium-Gallium-Zinc Oxide) as semiconductor. This breakthrough achievement will enable the development of thin-film passive UHF (ultra-high frequency) RFID (radiofrequency ID) tags to replace item-level bar codes.

Passive intelligent item-level RFID tags are ideal for the retail sector and enable more accurate tracking of individual products (i.e. expiration, misplacement, theft, etc). Unlike bar codes which require one-per-one scanning by the reader, UHF RFID-tags could be scanned all together. However, today's UHF silicon-based RFID technology is too expensive for mass-market retail applications. Imec's research aims to dramatically reduce the cost of the entire RFID by combining ultra high frequency (UHF) operation with a thin-film-based technology. UHF have a long reading range (5 to 10 meters) and employ small, printed, low-cost antennas. Compared to Silicon, IGZO based technology has the potential to result in a low-cost solution, since IGZO thin film active devices are fabricated using a cheaper, low-temperature process. This allows the development of chips direct on a plastic foils, such as on the product package. However, IGZO has intrinsically a lower performance than conventional Silicon and other conventional crystalline semiconductors. Therefore, it is a challenge to fabricate ultra-fast active devices based on IGZO.

The diode is the fundamental block in the power supply generator of passive, i.e., battery-less tags. It rectifies the carrier wave captured by the and feeds the power supply on the tag. IGZO is an amorphous semiconductor with gap states that impede the formation of a stable Schottky barrier, irrespective of the metal used. To achieve a stable Schottky barrier, imec developed specific plasma and anneal treatments that alter the chemistry of the Schottky interface. The resulting IGZO Schottky diodes have a rectification ratio of up to nine orders of magnitude (at +1V and -1V), current densities of up to 800A/cm2 at forward bias of 1V, and a cut-off frequency of 1.8 GHz. When incorporated in a single stage rectifier, the cut-off frequency is 1.1GHz. The rectifiers are demonstrated to operate at ultra- (868MHz) with low losses.

This achievement, together with imec's recent demonstration of a functioning bidirectional thin-film RFID circuit (at ISSCC2012), are critical research development steps towards the realization of intelligent item-level tagging with broad implementation opportunities in the retail sector.

Explore further: X-ray detector on plastic delivers medical imaging performance

add to favorites email to friend print save as pdf

Related Stories

Playing RFID tag with sheets of paper

Feb 06, 2012

Radio Frequency Identification (RFID) tags are an essential component of modern shopping, logistics, warehouse, and stock control for toll roads, casino chips and much more. They provide a simple way to track the item to ...

Recommended for you

Growing app industry has developers racing to keep up

6 hours ago

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Review: With Galaxy S5, Samsung proves less can be more

8 hours ago

Samsung Electronics Co. has produced the most formidable rival yet to the iPhone 5S: the Galaxy S5. The device, released over the weekend, is the fifth edition of the company's successful line of Galaxy S ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Chromodynamix
not rated yet Dec 13, 2012
Now we can tag The Flash!

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.