Visualizing the structures of molecules

December 5, 2012
Credit: Hitoshi Goto

Hitoshi Goto and colleagues have developed high performance molecular simulation tools to study the 3D arrangement of molecules, enabling better design of medicinal and agricultural drugs which are more effective and fewer side effects.

"We've developed high performance tools and a for researchers to study the conformation—the three-dimensional structural arrangement of molecules, and this is enabling us to design medicinal and agricultural drugs that are more effective and have fewer side-effects," says Goto. The tool-set has been commercialized under the brand name CONFLEX/BARISTA, for which Goto wrote the algorithms.

He explains that CONFLEX, together with its graphical user interface BARISTA, enables researchers to visualize the possible spatial arrangements of atoms in a molecule and therefore more easily study their chemically important (energetically stable) molecular formations. This in turn can reveal how a particular arrangement or conformation influences a molecule's . For instance, HIV inhibitors can be better understood and studied with the aid of 3-D provided by the software.

Another area of Goto's research involves the development of methods to predict crystal structures in instances of molecular structures having more than one crystalline form: a phenomenon known as polymorphism.

"When a molecule can be crystallized with different packing forms, a part of the grown crystal may show unexpected physical, chemical and biological (medicinal) properties," says Goto. For instance, a second of aspirin has recently been discovered, which is slightly different to the commonly known standard structure. Goto's crystal can be used to calculate the energies bound up in such a polymorphic structure, an understanding that can help research chemists predict its medicinal effects.

CONFLEX is currently available at version 6. Goto and his lab co-workers have been working on new algorithms that will help researchers search for new crystal structures, an endeavor that normally requires the use of expensive X-ray equipment. "This function will be available in a few months in version 7 of CONFLEX," says Goto. "Developing these algorithms is very complex and time consuming. In fact, I've been working on them for over a decade, for it's involved a lot of trial and error. So I'm pleased this feature is now ready to be distributed."

Explore further: Study of atomic movement may influence design of pharmaceuticals

Related Stories

Destroying amyloid proteins with lasers

January 7, 2009

Researchers have found that a technique used to visualize amyloid fibers in the laboratory might have the potential to destroy them in the clinic. The technique involves zapping the fluorescently-tagged fibers with a laser, ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.