Measuring flow using a wobbling tube

Dec 18, 2012
Measuring flow using a wobbling tube
Scanning Electron Microscope image of the Coriolis mass flow sensor.

One milligram per hour: fluid flow can be measured with great precision using a tiny 'wobbling' tube with a diameter of only 40 micrometres. Thanks to a new technique, the sensor, which makes use of the 'Coriolis effect', can be made even more compact, e.g. for medical applications. Scientists at the University of Twente's MESA+ Institute for Nanotechnology have published an article on the subject in Applied Physics Letters.

Coriolis meters are often enormous instruments mounted in a to measure liquid flow accurately. Reduced to micrometre dimensions the result is a sensor that can measure extremely slow-moving small quantities of fluids. The fluid is passed through a tiny rectangular tube that is made to wobble. The Coriolis effect then causes the tube to move upwards as well, and this upward displacement is a measure of the amount of fluid flowing through it.

No magnets

Measuring flow using a wobbling tube
Mechanism of action: the tube is rotated in a wobbling motion (curved arrows). As a result of the Coriolis effect the flowing fluid also experiences an upward force, which is a measure of the flow.

Until now magnets have been used to bring about the wobbling motion. One of the problems was that the magnets are far bigger than the actual sensor. In the Applied Physics Letters article researcher Harmen Droogendijk introduces a new method, known as 'parametric excitation'. Dozens of 'electric fingers' attached to the tube fit between identical opposing fingers mounted on supports running parallel to the tube. The extent to which these opposing sets of fingers slide between one another can be used to measure the tube's lateral displacement. But we could also use them to set the tube in motion, thought Droogendijk. He found that there is a limited area of electrical tension where the tube moves up and down much more than at a lower or higher tension, though this has to be tuned very precisely. Droogendijk carried out , resulting in a new design that no longer needs magnets. More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The research was carried out in the Transducers Science and Technology group led by Prof. Gijs Krijnen, which is part of the University of Twente's MESA+ Institute for . It received financial support from NanoNed NL.

Measuring flow using a wobbling tube
Detail of the ‘fingers’ on the tube (diagonal from below left to top right, with three parallel lines on top) and on either side, for the wobbling motion.

More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The Coriolis mass flow sensor is being further developed by Bronkhorst High-Tech in Ruurlo to produce a precision instrument for such things as monitoring medical IV pumps, analysing medicines using liquid chromatography, and use in microreactors and the manufacture of solar cells.

The article, ´Parametric excitation of a micro Coriolis mass flow sensor´, by Harmen Droogendijk, Jarno Groenesteijn, Jeroen Haneveld (Micronit Microfluidics), Remco Sanders, Remco Wiegerink, Theo Lammerink, Joost Lötters (Bronkhorst High-Tech) and Gijs Krijnen, has been published in Applied Physics Letters.

Explore further: Watching the structure of glass under pressure

add to favorites email to friend print save as pdf

Related Stories

Synthetic cricket pricks up its 'ears'

Dec 06, 2011

The tiny hairs on the abdomen of a cricket have inspired researchers at the University of Twente, to make a new type of sensor which is ultra sensitive to air flows. These synthetic cricket hairs can now also ...

Return of the vacuum tube

May 18, 2012

Vacuum tubes have been retro for decades. They almost completely disappeared from the electronics scene when consumers exchanged their old cathode ray tube monitors for flat screen TVs. Their replacement – the semiconductor ...

Aesop's Fable unlocks how we think

Jul 25, 2012

(Medical Xpress) -- Cambridge scientists have used an age-old fable to help illustrate how we think differently to other animals.

Recommended for you

Watching the structure of glass under pressure

16 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

19 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

20 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0