Tracking gene flow in marine plant evolution

December 10, 2012

A new method that could give a deeper insight into evolutional biology by tracing directionality in gene migration has just appeared in EPJ Data Science. Paolo Masucci from the Centre for Advanced Spatial Analysis, at University College of London, UK, and colleagues identified the segregation of genes that a marine plant underwent during its evolution. They found that the exchange of genes, or gene flow, between populations of a marine plant went westward from the Mediterranean to the Atlantic. This methodology could also be used to estimate the information flow in complex networks, including other biological or social networks.

The authors focused on a plant called Cymodocea nodosa, found in a marine area ranging from the East Mediterranean to the Iberian-African Atlantic coast. They relied on molecular markers to retrace the plant's , among distinct that are distant geographically. The idea was to infer the evolutionary pathways from datasets obtained by sequencing the plant, made of portions of non-coding DNA, called microsatellites.

Previous methods did not allow us to infer the direction of migration with such molecular data. Their statistical analyses require complex computing power, limiting the ability to explore simple evolutionary scenarios.

The authors restricted their analysis of a microsatellite genetic-markers dataset to those found in restricted island areas, among samples collected from the Mediterranean to the Atlantic. The team then inferred the past history of the gene flow based on the geographical distribution of genetic variations.

Masucci and colleagues found that gene flow most likely occurred westward from the Mediterranean to the Atlantic. Dominant Mediterranean genetic variations penetrate into the nearest Atlantic sites, but the opposite is not true. Natural evidence and an independent cross analysis confirmed these findings.

Explore further: Atlantic trees will be affected the most by climate change on the Iberian Peninsula

More information: A. P. Masucci, S. Arnaud-Haond, V. M. Eguíluz, E. Hernández-García and E. A. Serrão, Genetic flow directionality and geographical segregation in a Cymodocea nodosa genetic diversity network, EPJ Data Science, 2012, 1:11, DOI10.1140/epjds11

Related Stories

Mediterranean Sea dried up five million years ago

February 16, 2009

(PhysOrg.com) -- Upward movement of the Earth's crust transformed the Straits of Gibraltar into a dam. Approximately five million years ago, the Mediterranean Sea dried up after it was sealed off from the Atlantic Ocean. ...

Skeletons in cave reveal Mediterranean secrets

November 28, 2012

Skeletal remains in an island cave in Favignana, Italy, reveal that modern humans first settled in Sicily around the time of the last ice age and despite living on Mediterranean islands, ate little seafood. The research is ...

Recommended for you

A novel toxin for M. tuberculosis

August 4, 2015

Despite 132 years of study, no toxin had ever been found for the deadly pathogen Mycobacterium tuberculosis, which infects 9 million people a year and kills more than 1 million.

New biosensors for managing microbial 'workers'

August 4, 2015

Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their ...

Fish that have their own fish finders

August 4, 2015

The more than 200 species in the family Mormyridae communicate with one another in a way completely alien to our species: by means of electric discharges generated by an organ in their tails.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.