Time-resolved measurements show colloidal nanoplatelets act like quantum wells

December 7, 2012
Time-resolved measurements show colloidal nanoplatelets act like quantum wells
Schematic and transmission electron microscope (TEM) image of CdSe nanoplatelets with a thickness of 5 monolayers.

The relaxation of high-energy carriers (electrons and holes) in colloidal nanoplatelets have been measured by researchers in the Nanophotonics Group at the Center for Nanoscale Materials, working with colleagues at the University of Chicago. The measurements show that the carriers behave like carriers in quantum wells. Quantum wells have found widespread application in optoelectronics, and the new results suggest that colloidal nanoplatelets should find similar applications, with the added advantage that they can be produced at low cost and in large quantities.

Quantum wells are thin semiconductor layers in which charge carriers are confined in one dimension but are free to move in the other two dimensions. Such confinement means that these structures have tuneable optical bandgaps and can strongly absorb and emit light, which makes them good materials for optical modulators and . Until recently, could be produced only by using expensive crystal-growth techniques such as and metal-organic vapor-phase epitaxy. Recently, however, methods have been developed to chemically synthesize thin, flat, in solution. These "nanoplatelets" are only a few atomic layers thick but tens to hundreds of nanometers across. Charge carriers in these structures should therefore behave as they would in a quantum well. Measurements of and emission from nanoplatelets have indicated that this is indeed the case, but evidence has been indirect, and results from different groups have disagreed with one another quantitatively.

The new experiments use time- and frequency-resolved photoluminescence measurements to monitor how high-energy charge carriers relax in the nanoplatelets. The observed relaxation was consistent with quantum well behavior, and qualitatively different from what would be expected for a quantum dot, where carriers are confined in all three dimensions. Moreover, the relaxation is rapid, occurring in less than 50 picoseconds. This means that the nanoplatelets should serve well as the active material in optical modulators and in semiconductor lasers.

Explore further: Life Expectancy on the Rise -- Even for Quantum States

More information: M.Pelton, S. Ithurria, R.D. Schaller, D.S. Dolzhnikov, and D.V. Talapin, "Carrier cooling in colloidal quantum wells," Nano Lett. ASAP (2012). DOI: 10.1021/nl302986y

Related Stories

Life Expectancy on the Rise -- Even for Quantum States

April 14, 2009

(PhysOrg.com) -- For the first time, scientists have succeeded in measuring and controlling the lifetime of quantum states with potential use in optoelectronic chips. This achievement is highly significant for the ongoing ...

'Dark Pulse Laser' produces bursts of... almost nothing

June 9, 2010

In an advance that sounds almost Zen, researchers at the National Institute of Standards and Technology and JILA, a joint institute of NIST and the University of Colorado at Boulder, have demonstrated a new type of pulsed ...

Faster colloidal fluorescence emitters: Nanoplatelets

December 9, 2011

(PhysOrg.com) -- Significant advances in the application of colloidal structures as light emitters and lasers may soon be realized following the discovery of very fast fluorescence emission rates in colloidal nanoplatelets. ...

Nano discs pose potential health risk

February 21, 2012

(PhysOrg.com) -- A revolutionary material that is used in computer technology could pose health risks to those involved in its manufacture.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.