Team to develop supermagnets using materials that mimic iron-nickel found in meteorites

Dec 12, 2012

(Phys.org)—Joseph Goldstein, an engineering professor at the University of Massachusetts Amherst, is part of a research team trying to produce an iron-nickel alloy that is currently only found in meteorites, for use in making supermagnets. The goal of the research is to develop bulk quantities of commercially viable, environmentally sound supermagnets, which can be used in electric vehicles, wind-turbine generators and many other machines.

The first phase of the work is funded by an 18-month, $3.3-million grant from the U.S. Department of Energy's (DOE) Advanced Research Projects Agency–Energy program. The UMass Amherst share of the grant is approximately $300,000.

Researchers are looking for a way to realign the of inexpensive iron and nickel, metals found abundantly on Earth into a new structure, FeNi known as tetrataenite, which has the super- they seek. Right now, tetrataenite is only found in meteorites.

The effort to recreate the iron-nickel mineral from outer space is driven by basic Earth-bound . Goldstein says, "The strongest magnets available in the world are made with . Several of these in combination with iron make extremely strong magnets. The basic problem is that the Chinese own 95 percent of the mines that produce and therefore control their availability and cost. So we need to create these strong magnets in another way."

That's where the focus on meteorites and the tetrataenite comes in. Goldstein, a world-renowned expert on meteorites, has been studying tetrataenite for decades. "At UMass, our particular task is to look at the meteorites," Goldstein says. "We're trying to learn composition ranges, get some ideas about how the mineral formed, and do some structure measurements on them at the nano-scale."

He says a basic task is to reorder the atoms using the plentiful iron-nickel we have on Earth, realigning the layers of iron and nickel in a very specific way to make it highly magnetic. It's proving to be a difficult task, says Goldstein.

If the team succeeds, however, the payoff could be significant because the world market for permanent supermagnets is projected to exceed $20 billion by 2020.

It's also a challenge Goldstein welcomes. "For years I've been working on meteorites, which have a wealth of scientific interest but were thought to have no commercial value at all," says Goldstein. "And now we're finding something of commercial interest. The meteorites are informing us how to go about this industrial process."

Explore further: NASA is catalyst for hydrogen technology

add to favorites email to friend print save as pdf

Related Stories

Rare meteorites created in violent celestial collision

Nov 15, 2012

A tiny fraction of meteorites on earth contain strikingly beautiful, translucent, olive-green crystals embedded in an iron-nickel matrix. Called pallasites, these "space gems" have fascinated scientists since ...

Meteorites rich with information, expert says

Mar 28, 2007

A Purdue University professor on Wednesday (March 28) said at national convention that meteorites hold many clues into the creation and evolution of the solar system. Michael Lipschutz, a professor of inorganic chemistry and ...

Meteorites: Tool kits for creating life on Earth

Aug 08, 2011

Meteorites hold a record of the chemicals that existed in the early Solar System and that may have been a crucial source of the organic compounds that gave rise to life on Earth. Since the 1960s, scientists have been trying ...

Recommended for you

New insights on carbonic acid in water

3 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

NASA is catalyst for hydrogen technology

13 hours ago

NASA answered a call to help the world's largest aerospace company develop a better way to generate electricity for its aircraft. Instead, it wound up helping a very small technology company to thrive.

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

User comments : 0