Synthetic and biological nanoparticles combined to produce new metamaterials

Dec 19, 2012
Two different protein cages, cowpea chlorotic mottle virus (blue) and Pyrococcus furiosus ferritin (red), can be used to guide the assembly of binary nanoparticles superlattices through tunable electrostatic interactions with charged gold nanoparticles (yellow). Credit: Aalto University

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

Layer structures, or superlattices, of crystalline nanoparticles have been extensively studied in recent years. The research develops hierarchically structured nanomaterials with tuneable optical, magnetic, electronic and catalytic properties.

"Such biohybrid superlattices of nanoparticles and proteins would allow the best features of both particle types to be combined. They would comprise the versatility of synthetic nanoparticles and the highly controlled assembly properties of biomolecules," researchers say.

This video is not supported by your browser at this time.

The research group also discovered magnetic self-assemblies of ferritin protein cages and gold nanoparticles. These magnetic assemblies can modulate efficiently spin–spin relaxation times of surrounding protons in water by enhancing the spin dephasing and consequently provide contrast enhancement in (MRI).

The and viruses adopt a special kind of crystal structure. It does not correspond to any known atomic or molecular crystal structure and it has previously not been observed with nano-sized particles.

" – the old foes of mankind – can do much more than infect . Evolution has rendered them with the capability of highly controlled self-assembly properties. Ultimately, by utilising their building blocks we can bring multiple functions to that consist of both living and synthetic matter," Kostiainen trusts.

The results have just been published in the respected journal Nature Nanotechnology.

Explore further: Dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths

More information: dx.doi.org/10.1038/nnano.2012.220

add to favorites email to friend print save as pdf

Related Stories

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Building crystalline materials from nanoparticles and DNA

Oct 13, 2011

Nature is a master builder. Using a bottom-up approach, nature takes tiny atoms and, through chemical bonding, makes crystalline materials, like diamonds, silicon and even table salt. In all of them, the properties of the ...

Highlight: Quasi-Crystalline Order at Nanoscale

Jan 11, 2010

Nanoparticles have a strong tendency to form periodic structures. Mixing and matching of two different types of nanoparticles allows the formation of binary nanoparticle superlattices isostructural to ionic ...

Recommended for you

A new way to make microstructured surfaces

4 hours ago

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

23 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

User comments : 0