Synthetic and biological nanoparticles combined to produce new metamaterials

Dec 19, 2012
Two different protein cages, cowpea chlorotic mottle virus (blue) and Pyrococcus furiosus ferritin (red), can be used to guide the assembly of binary nanoparticles superlattices through tunable electrostatic interactions with charged gold nanoparticles (yellow). Credit: Aalto University

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

Layer structures, or superlattices, of crystalline nanoparticles have been extensively studied in recent years. The research develops hierarchically structured nanomaterials with tuneable optical, magnetic, electronic and catalytic properties.

"Such biohybrid superlattices of nanoparticles and proteins would allow the best features of both particle types to be combined. They would comprise the versatility of synthetic nanoparticles and the highly controlled assembly properties of biomolecules," researchers say.

This video is not supported by your browser at this time.

The research group also discovered magnetic self-assemblies of ferritin protein cages and gold nanoparticles. These magnetic assemblies can modulate efficiently spin–spin relaxation times of surrounding protons in water by enhancing the spin dephasing and consequently provide contrast enhancement in (MRI).

The and viruses adopt a special kind of crystal structure. It does not correspond to any known atomic or molecular crystal structure and it has previously not been observed with nano-sized particles.

" – the old foes of mankind – can do much more than infect . Evolution has rendered them with the capability of highly controlled self-assembly properties. Ultimately, by utilising their building blocks we can bring multiple functions to that consist of both living and synthetic matter," Kostiainen trusts.

The results have just been published in the respected journal Nature Nanotechnology.

Explore further: Engineered proteins stick like glue—even in water

More information: dx.doi.org/10.1038/nnano.2012.220

add to favorites email to friend print save as pdf

Related Stories

Magnetic spin on non-magnetic materials

Feb 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled ...

Building crystalline materials from nanoparticles and DNA

Oct 13, 2011

Nature is a master builder. Using a bottom-up approach, nature takes tiny atoms and, through chemical bonding, makes crystalline materials, like diamonds, silicon and even table salt. In all of them, the properties of the ...

Highlight: Quasi-Crystalline Order at Nanoscale

Jan 11, 2010

Nanoparticles have a strong tendency to form periodic structures. Mixing and matching of two different types of nanoparticles allows the formation of binary nanoparticle superlattices isostructural to ionic ...

Recommended for you

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0