Synchrotron gives insight into green energy enzymes

Dec 04, 2012 by Andy Fell

(Phys.org)—UC Davis chemists have been using a Japanese synchrotron to get a detailed look at enzymes that could help power the green economy. The work was published online Nov. 8 by the journal Angewandte Chemie and is featured on the cover of the Nov. 26 issue.

One option for powering clean, environment friendly vehicles is to run them on hydrogen fuel rather than carbon-based fuels. Cheap catalysts to prepare (H2) are key to this future "."

Current man-made catalysts are based on the rare and precious metal platinum. But living cells contain enzymes called hydrogenases, based on the abundant metals nickel and iron, which can do the same job. Chemists are very interested in figuring out how these natural catalysts work and trying to mimic them.

Saeed Kamali, a at UC Davis and Stephen Cramer, professor of chemistry have just published a study revealing new details of the iron-nickel complex at the heart of the natural hydrogenase. In collaboration with researchers at the Max Planck Institute in Germany and in the U.S., they used a technique called Nuclear Resonance Vibrational Spectroscopy (NRVS) and the SPring-8 synchrotron at the Japan Synchrotron Radiation Research Institute to probe the crystals and discovered new information about how the atoms in the complex can move.

Explore further: Scientist hopes to improve rare earth purification process

More information: onlinelibrary.wiley.com/doi/10… e.201204616/abstract

add to favorites email to friend print save as pdf

Related Stories

Synthetic catalyst mimics nature's 'hydrogen economy'

May 18, 2009

By creating a model of the active site found in a naturally occurring enzyme, chemists at the University of Illinois have described a catalyst that acts like nature's most pervasive hydrogen processor.

Better chemistry through living models

Jun 06, 2007

Scientists at Pacific Northwest National Laboratory will receive $1.98 million from the U.S. Department of Energy over the next three years to emulate nature’s use of enzymes to convert chemicals to energy, PNNL announced ...

Cobalt catalysts for simple water splitting

May 07, 2010

(PhysOrg.com) -- Researchers from UC Davis and the Massachusetts Institute of Technology are studying how a simple cobalt catalyst can split water molecules. Such inexpensive catalysts could one day be used to convert sunlight ...

Recommended for you

A new approach to creating organic zeolites

9 minutes ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

19 hours ago

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0