Sustainable way to make a prized fragrance ingredient

Dec 19, 2012
Sustainable way to make a prized fragrance ingredient

Large amounts of a substitute for one of the world's most treasured fragrance ingredients—a substance that also has potential anti-cancer activity—could be produced with a sustainable new technology, scientists are reporting. Published in the Journal of the American Chemical Society, the advance enables cultures of bacteria to produce a substitute for natural ambergris, which sells for hundreds of dollars an ounce.

Laurent Daviet, Michel Schalk and colleagues explain that ambergris, a waxy substance excreted by , has been prized as a fragrance ingredient for centuries. Ambergris has a pleasant sweet and earthy scent of its own, and it enhances other scents in high-end perfumes. With sperm whales an endangered species, and natural ambergris not used in perfumes in the U.S., perfume makers have turned to substitutes. One is made from sclareol, obtained from the Clary sage plant. But the plant contains only small amounts of sclareol, and it is laborious to extract and purify. That's why the scientists looked for a better way of making large amounts of sclareol.

Their report describes isolating the genetic material (DNA) that produces the two Clary sage enzymes needed to make sclareol. They put the DNA into bacteria, which made large amounts of sclareol in bioreactors.

Explore further: Micropore labyrinths as crucibles of life

More information: Toward a Biosynthetic Route to Sclareol and Amber Odorants, J. Am. Chem. Soc., 2012, 134 (46), pp 18900–18903. DOI: 10.1021/ja307404u

Abstract
Ambergris, a waxy substance excreted by the intestinal tract of the sperm whale, has been a highly prized fragrance ingredient for millenia. Because of supply shortage and price inflation, a number of ambergris substitutes have been developed by the fragrance industry. One of the key olfactory components and most appreciated substitutes of ambergris, Ambrox is produced industrially by semisynthesis from sclareol, a diterpene-diol isolated from Clary sage. In the present study, we report the cloning and functional characterization of the enzymes responsible for the biosynthesis of sclareol. Furthermore, we reconstructed the sclareol biosynthetic pathway in genetically engineered Escherichia coli and reached sclareol titers of 1.5 g/L in high-cell-density fermentation. Our work provides a basis for the development of an alternative, sustainable, and cost-efficient route to sclareol and other diterpene analogues.

add to favorites email to friend print save as pdf

Related Stories

How to make high-end perfumes without whale barf

Apr 05, 2012

University of British Columbia researchers have identified a gene in balsam fir trees that could facilitate cheaper and more sustainable production of plant-based fixatives and scents used in the fragrance industry and reduce ...

A second ascent of chemistry's Mt. Everest

Dec 12, 2012

In science's equivalent of ascending Mt. Everest, researchers are reporting success in one of the most difficult challenges in synthetic chemistry—a field in which scientists reproduce natural and other ...

Sperm whales return to Mediterranean

Feb 14, 2007

Marine biologists in Italy say the sperm whale, once thought to have been nearly wiped from the region by drift nets, has returned to the Mediterranean.

Recommended for you

Micropore labyrinths as crucibles of life

Jan 27, 2015

Water-filled micropores in hot rock may have acted as the nurseries in which life on Earth began. An LMU team has now shown that temperature gradients in pore systems promote the cyclical replication and ...

Cell imaging gets colorful

Jan 26, 2015

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

Jan 26, 2015

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

Chemists find a way to unboil eggs

Jan 26, 2015

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.