Sustainable way to make a prized fragrance ingredient

Dec 19, 2012
Sustainable way to make a prized fragrance ingredient

Large amounts of a substitute for one of the world's most treasured fragrance ingredients—a substance that also has potential anti-cancer activity—could be produced with a sustainable new technology, scientists are reporting. Published in the Journal of the American Chemical Society, the advance enables cultures of bacteria to produce a substitute for natural ambergris, which sells for hundreds of dollars an ounce.

Laurent Daviet, Michel Schalk and colleagues explain that ambergris, a waxy substance excreted by , has been prized as a fragrance ingredient for centuries. Ambergris has a pleasant sweet and earthy scent of its own, and it enhances other scents in high-end perfumes. With sperm whales an endangered species, and natural ambergris not used in perfumes in the U.S., perfume makers have turned to substitutes. One is made from sclareol, obtained from the Clary sage plant. But the plant contains only small amounts of sclareol, and it is laborious to extract and purify. That's why the scientists looked for a better way of making large amounts of sclareol.

Their report describes isolating the genetic material (DNA) that produces the two Clary sage enzymes needed to make sclareol. They put the DNA into bacteria, which made large amounts of sclareol in bioreactors.

Explore further: Video: How did life on Earth begin?

More information: Toward a Biosynthetic Route to Sclareol and Amber Odorants, J. Am. Chem. Soc., 2012, 134 (46), pp 18900–18903. DOI: 10.1021/ja307404u

Abstract
Ambergris, a waxy substance excreted by the intestinal tract of the sperm whale, has been a highly prized fragrance ingredient for millenia. Because of supply shortage and price inflation, a number of ambergris substitutes have been developed by the fragrance industry. One of the key olfactory components and most appreciated substitutes of ambergris, Ambrox is produced industrially by semisynthesis from sclareol, a diterpene-diol isolated from Clary sage. In the present study, we report the cloning and functional characterization of the enzymes responsible for the biosynthesis of sclareol. Furthermore, we reconstructed the sclareol biosynthetic pathway in genetically engineered Escherichia coli and reached sclareol titers of 1.5 g/L in high-cell-density fermentation. Our work provides a basis for the development of an alternative, sustainable, and cost-efficient route to sclareol and other diterpene analogues.

add to favorites email to friend print save as pdf

Related Stories

How to make high-end perfumes without whale barf

Apr 05, 2012

University of British Columbia researchers have identified a gene in balsam fir trees that could facilitate cheaper and more sustainable production of plant-based fixatives and scents used in the fragrance industry and reduce ...

A second ascent of chemistry's Mt. Everest

Dec 12, 2012

In science's equivalent of ascending Mt. Everest, researchers are reporting success in one of the most difficult challenges in synthetic chemistry—a field in which scientists reproduce natural and other ...

Sperm whales return to Mediterranean

Feb 14, 2007

Marine biologists in Italy say the sperm whale, once thought to have been nearly wiped from the region by drift nets, has returned to the Mediterranean.

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0