Sustainable way to make a prized fragrance ingredient

December 19, 2012
Sustainable way to make a prized fragrance ingredient

Large amounts of a substitute for one of the world's most treasured fragrance ingredients—a substance that also has potential anti-cancer activity—could be produced with a sustainable new technology, scientists are reporting. Published in the Journal of the American Chemical Society, the advance enables cultures of bacteria to produce a substitute for natural ambergris, which sells for hundreds of dollars an ounce.

Laurent Daviet, Michel Schalk and colleagues explain that ambergris, a waxy substance excreted by , has been prized as a fragrance ingredient for centuries. Ambergris has a pleasant sweet and earthy scent of its own, and it enhances other scents in high-end perfumes. With sperm whales an endangered species, and natural ambergris not used in perfumes in the U.S., perfume makers have turned to substitutes. One is made from sclareol, obtained from the Clary sage plant. But the plant contains only small amounts of sclareol, and it is laborious to extract and purify. That's why the scientists looked for a better way of making large amounts of sclareol.

Their report describes isolating the genetic material (DNA) that produces the two Clary sage enzymes needed to make sclareol. They put the DNA into bacteria, which made large amounts of sclareol in bioreactors.

Explore further: Sperm whales return to Mediterranean

More information: Toward a Biosynthetic Route to Sclareol and Amber Odorants, J. Am. Chem. Soc., 2012, 134 (46), pp 18900–18903. DOI: 10.1021/ja307404u

Ambergris, a waxy substance excreted by the intestinal tract of the sperm whale, has been a highly prized fragrance ingredient for millenia. Because of supply shortage and price inflation, a number of ambergris substitutes have been developed by the fragrance industry. One of the key olfactory components and most appreciated substitutes of ambergris, Ambrox is produced industrially by semisynthesis from sclareol, a diterpene-diol isolated from Clary sage. In the present study, we report the cloning and functional characterization of the enzymes responsible for the biosynthesis of sclareol. Furthermore, we reconstructed the sclareol biosynthetic pathway in genetically engineered Escherichia coli and reached sclareol titers of 1.5 g/L in high-cell-density fermentation. Our work provides a basis for the development of an alternative, sustainable, and cost-efficient route to sclareol and other diterpene analogues.

Related Stories

Sperm whales return to Mediterranean

February 14, 2007

Marine biologists in Italy say the sperm whale, once thought to have been nearly wiped from the region by drift nets, has returned to the Mediterranean.

How to make high-end perfumes without whale barf

April 5, 2012

University of British Columbia researchers have identified a gene in balsam fir trees that could facilitate cheaper and more sustainable production of plant-based fixatives and scents used in the fragrance industry and reduce ...

A second ascent of chemistry's Mt. Everest

December 12, 2012

In science's equivalent of ascending Mt. Everest, researchers are reporting success in one of the most difficult challenges in synthetic chemistry—a field in which scientists reproduce natural and other substances from ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.