Superconductors that work by themselves: Scientists discover new possibilities in chryoelectronics

Dec 18, 2012

(Phys.org)—Scientists from the University of Tübingen, working with colleagues from Tel Aviv University and the Kiel University have proposed [1] and experimentally demonstrated [2] a new type of superconducting element – named the φ-Josephson junction. Implemented in cryogenic devices, this element will make superconducting electronic circuits work practically "by themselves" and improve functionality. The scientists have published their results in the journal Physical Review Letters.

A is a quantum mechanical device consisting of two superconductors separated by a very thin (~2nm) barrier. In spite of the barrier, and thanks to , the superconducting electrons in one superconductor "feel" their neighbors in the other superconductor and "synchronize" with them, i.e. behave coherently. This quantum mechanical coherence on a allows using Josephson junctions as very precise sensors of magnetic fields e.g. for medical imaging or as for a scalable quantum computer.

In conventional Josephson junction this "synchronization" of the takes place in-phase i.e., without a phase shift. Recently it became possible to make Josephson junctions where the electrons in two superconductors are "synchronized" anti-phase, i.e., with a phase shift of π. Then one obtains what's known as the π Josephson junction. By combining the properties of conventional and π junctions the scientists from Tübingen, Tel Aviv and Kiel have proposed and demonstrated a Josephson junction with an arbitrary phase shift φ between electrons in two superconductors. The value of φ (0<φ≤π) can be chosen by design. This φ Josephson junction can be used as a device which keeps a constant phase shift between two superconducting electrodes.

"One can think about the φ-junction as a battery, which provides a given phase shift φ (instead of a voltage like in the usual battery) for an attached superconducting electronic circuit. This phase battery, unlike the usual battery, never discharges as it causes the flow of superconducting dissipationless currents," says Prof. Roman Mints (Tel Aviv University), co-author of the idea.

"We have understood how to combine 0 and π junctions and how to prove experimentally that we have obtained a φ junction during my visit to Tel Aviv in 2011", says Dr. Edward Goldobin – the leading scientist in this project. "Further, we discovered that this φ Josephson junction may actually be in two states – it may "synchronize" the with the phase shift being either +φ or -φ and, thus, one can use it as a bistable system or, in the future, as a quantum bit. In our experiments[2], conducted at 300mK (-273 °C), we demonstrated the existence of these two states: we can determine experimentally in which state the junction is, and we can compel the junction to switch to the desired state +φ or to -φ". The value of the phase shift φ can be controlled by the sample parameters such as film thickness. Prior to this work, scientists thought the ground states could not be modified at will.

"The superconductor-ferromagnet-insulator-superconductor technology used to make a φ junction (composite 0-π junction) results from more than a decade of research, and to date exists in no other lab in the world. However, other groups are catching up," says Dr. Martin Weides, who created the nano-engineered thin-film samples. "The key element of our samples is film morphology control down to the atomic scale."

The groups involved in the collaboration are very optimistic about their results and are going to investigate this φ Josephson junction in greater detail, in particular in the quantum domain, within the Collaborative Research Center SFB/TRR-21.

Explore further: Magnets for fusion energy: A revolutionary manufacturing method developed

More information: [1] E. Goldobin, D. Koelle, R. Kleiner, R.G.Mints, "Josephson junction with magnetic-field tunable ground state", Phys. Rev. Lett. 107, 227001 (2011).

[2] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin, "Experimental evidence of a φ Josephson junction", Phys. Rev. Lett. 109, 107002 (2012).

Related Stories

Einstein's theory applied to superconducting circuits

Jun 10, 2011

In recent years, UC Santa Barbara scientists showed that they could reproduce a basic superconductor using Einstein's general theory of relativity. Now, using the same theory, they have demonstrated that the Josephson junction ...

One step closer to quantum computers

Jul 06, 2012

EU researchers have developed novel ways of producing qubits that enhance their efficiency, potentially bringing the world one step closer to the ‘Holy Grail’ of supercomputing.

Quantum oscillator responds to pressure

Oct 14, 2012

In the far future, superconducting quantum bits might serve as components of high-performance computers. Today already do they help better understand the structure of solids, as is reported by researchers ...

Recommended for you

Physicists discuss quantum pigeonhole principle

1 hour ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

First in-situ images of void collapse in explosives

20 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Minich
1 / 5 (1) Dec 18, 2012
"The superconductor-ferromagnet-insulator-superconductor technology used to make a φ junction (composite 0-π junction) results from more than a decade of research, and to date exists in no other lab in the world. However, other groups are catching up," says Dr. Martin Weides


I wonder. When i meet in 2008 with Valerii V Ryazanov, head of Superconductivity Laboratory in Chernogolovka ISSP RAS he was very proud that his group was the first in PI junctions
See for example his rewiew in:
http://iopscience...2/8/A06/
some scans from this rewiers
http://www.bild.m...99-1.png
yellow color by Minich
http://www.bild.m...99-2.png
See also
http://arxiv.org/abs/1212.0815