New STT-MRAM memory element cuts power consumption of mobile processor by two-thirds

Dec 13, 2012
New STT-MRAM memory element cuts power consumption of mobile processor by two-thirds
Figure 1 Cross-section of memory element of Toshiba's perpendicular magnetization type STT-MRAM.

Toshiba Corporation today announced that the company has developed a prototype memory element for a spin transfer torque magnetoresistive random access memory (STT-MRAM) that achieves the world's lowest power consumption yet reported, indicating that it has the potential to surpass the power consumption efficiency of SRAM as cache memory.

Like all digital products, mobile devices, including smartphones and tablet PCs, rely on high-speed memory to supply the main processor with essential instructions and frequently requested data. Until now SRAM has provided the cache-. However, improving the performance of SRAM to match advances in mobile products results in increasing current leakage, both during operation and in standby mode, degrading power performance.

Figure2. Relationship between MRAM processing speed and power consumption.

, a next-generation memory based on magnetic materials, has emerged as an alternative to SRAM because it is non-volatile, cutting leak current during standby status. However, until now MRAM power consumption has exceeded that of SRAM, throwing up a major barrier to practical application.

Toshiba's new memory element advances the company's pioneering work in STT-MRAM and overcomes the longstanding operating trade-off by securing improved speed while reducing power consumption by 90 percent. The improved structure is based on perpendicular magnetization and takes element miniaturization to below 30nm. Introduction of this newly designed "normally-off" with no passes for current to leak into cuts leak current to zero in both operation and standby without any specific power supply management.

Toshiba has confirmed the performance of the new STT-MRAM memory element with a highly accurate processor simulator. This modeled application of an STT-MRAM integrating the memory as and recorded a two-thirds reduction in power consumption by a standard mobile chip set carrying out standard operating functions, a result confirming that the new MRAM element has the lowest yet achieved. This clearly points the way toward the first MRAM with the potential to surpass SRAM in practical operation.

Going forward Toshiba expects to bring the new memory element to STT-MRAM cache memory for mobile processors integrated into smartphones and tablet PCs, and will promote accelerated research and development toward that end.

This work includes results from the "Normally-off Computing" project funded by Japan's NEDO (New Energy and Industrial Technology Development Organization). Toshiba will present three papers on the new STT-MRAM and its technologies on December 11 and 12 at IEDM, the International Electron Device Meeting held by IEEE in San Francisco from December 10.

Explore further: Using materials other than silicon for next generation electronic devices

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

DIY glove-based tutor indicates muscle-memory potential

20 hours ago

A senior editor at IEEE Spectrum worked on a DIY project that enabled his 11-year-old son to improve his touch typing by use of a vibrating glove. His son was already "pretty quick on the keyboard," said ...

US cyber-warriors battling Islamic State on Twitter

21 hours ago

The United States has launched a social media offensive against the Islamic State and Al-Qaeda, setting out to win the war of ideas by ridiculing the militants with a mixture of blunt language and sarcasm.

User comments : 0