Scientists uncover how immune cells sense who they are

December 11, 2012

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the National Institutes of Health, have demonstrated that DNA previously thought to be "junk" plays a critical role in immune system response. The team's findings were published in Cell and may lead to the identification of new therapeutic targets for the treatment of immune-related disorders.

There are 3.2 billion in the human genome, but only 2 percent are in the regions we call genes, which provide the code for proteins. Up until recently, the role of the rest of the genome was mostly unknown and overlooked.

NIH researchers used whole genome DNA sequencing technology that allowed them to "see" which part of the genomic DNA is actively engaged in supporting various cellular functions. The investigators found that members of the signal transducers and activators of transcription (STAT) protein family play a major role in shaping the identity of the immune system's T . Importantly, when studying the impact of "junk" DNA, they saw that this greater than expected role was made possible by the STAT proteins' regulation of enhancer activity. Enhancers are short DNA regions that are outside the genes, but regulate . While enhancers do not directly code for proteins, they regulate the protein production process.

This work provides an example of how the cellular environment helps determine cell identity. Specifically, the research team demonstrated that STAT proteins act as cellular environmental sensors that, by regulating enhancers residing in the "junk" region of the genome, determine what subtype a T cell becomes. The present work should help clarify how these switches may relate to genetic risk of .

Explore further: What's driving specific patterns of gene expression among cell types?

Related Stories

Controlling inflammatory and immune responses

July 12, 2012

Researchers at the IRCM, led by geneticist Dr. Jacques Drouin, recently defined the interaction between two essential proteins that control inflammation. This important breakthrough will be published in tomorrow's print edition ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.