Scientists uncover how immune cells sense who they are

Dec 11, 2012

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the National Institutes of Health, have demonstrated that DNA previously thought to be "junk" plays a critical role in immune system response. The team's findings were published in Cell and may lead to the identification of new therapeutic targets for the treatment of immune-related disorders.

There are 3.2 billion in the human genome, but only 2 percent are in the regions we call genes, which provide the code for proteins. Up until recently, the role of the rest of the genome was mostly unknown and overlooked.

NIH researchers used whole genome DNA sequencing technology that allowed them to "see" which part of the genomic DNA is actively engaged in supporting various cellular functions. The investigators found that members of the signal transducers and activators of transcription (STAT) protein family play a major role in shaping the identity of the immune system's T . Importantly, when studying the impact of "junk" DNA, they saw that this greater than expected role was made possible by the STAT proteins' regulation of enhancer activity. Enhancers are short DNA regions that are outside the genes, but regulate . While enhancers do not directly code for proteins, they regulate the protein production process.

This work provides an example of how the cellular environment helps determine cell identity. Specifically, the research team demonstrated that STAT proteins act as cellular environmental sensors that, by regulating enhancers residing in the "junk" region of the genome, determine what subtype a T cell becomes. The present work should help clarify how these switches may relate to genetic risk of .

Explore further: First detailed microscopy evidence of bacteria at the lower size limit of life

add to favorites email to friend print save as pdf

Related Stories

Controlling inflammatory and immune responses

Jul 12, 2012

Researchers at the IRCM, led by geneticist Dr. Jacques Drouin, recently defined the interaction between two essential proteins that control inflammation. This important breakthrough will be published in tomorrow's print edition ...

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

Feb 26, 2015

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

Feb 26, 2015

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

Feb 26, 2015

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.