Scientists uncover how immune cells sense who they are

Dec 11, 2012

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the National Institutes of Health, have demonstrated that DNA previously thought to be "junk" plays a critical role in immune system response. The team's findings were published in Cell and may lead to the identification of new therapeutic targets for the treatment of immune-related disorders.

There are 3.2 billion in the human genome, but only 2 percent are in the regions we call genes, which provide the code for proteins. Up until recently, the role of the rest of the genome was mostly unknown and overlooked.

NIH researchers used whole genome DNA sequencing technology that allowed them to "see" which part of the genomic DNA is actively engaged in supporting various cellular functions. The investigators found that members of the signal transducers and activators of transcription (STAT) protein family play a major role in shaping the identity of the immune system's T . Importantly, when studying the impact of "junk" DNA, they saw that this greater than expected role was made possible by the STAT proteins' regulation of enhancer activity. Enhancers are short DNA regions that are outside the genes, but regulate . While enhancers do not directly code for proteins, they regulate the protein production process.

This work provides an example of how the cellular environment helps determine cell identity. Specifically, the research team demonstrated that STAT proteins act as cellular environmental sensors that, by regulating enhancers residing in the "junk" region of the genome, determine what subtype a T cell becomes. The present work should help clarify how these switches may relate to genetic risk of .

Explore further: Cellular memory of stressful situations

add to favorites email to friend print save as pdf

Related Stories

Controlling inflammatory and immune responses

Jul 12, 2012

Researchers at the IRCM, led by geneticist Dr. Jacques Drouin, recently defined the interaction between two essential proteins that control inflammation. This important breakthrough will be published in tomorrow's print edition ...

Recommended for you

In a role reversal, RNAs proofread themselves

2 hours ago

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

5 hours ago

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Understanding cellular ageing

5 hours ago

Researchers at the BBSRC-supported Babraham Institute have mapped the physical structure of the nuclear landscape in unprecedented detail to understand changes in genomic interactions occurring in cell senescence and ageing. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.